論文の概要: Toward Semi-Automatic Misconception Discovery Using Code Embeddings
- arxiv url: http://arxiv.org/abs/2103.04448v1
- Date: Sun, 7 Mar 2021 20:32:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-10 19:35:45.618795
- Title: Toward Semi-Automatic Misconception Discovery Using Code Embeddings
- Title(参考訳): コード埋め込みを用いた半自動誤解発見に向けて
- Authors: Yang Shi, Krupal Shah, Wengran Wang, Samiha Marwan, Poorvaja Penmetsa
and Thomas W. Price
- Abstract要約: 本論文では,計算コースにおける生徒のプログラムコードから問題特異的な誤解を半自動的に発見する手法を提案する。
ブロックベースのプログラミングデータセットでモデルをトレーニングし、学習した埋め込みをクラスタの不正な学生の応募に使用しました。
- 参考スコア(独自算出の注目度): 4.369757255496184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding students' misconceptions is important for effective teaching
and assessment. However, discovering such misconceptions manually can be
time-consuming and laborious. Automated misconception discovery can address
these challenges by highlighting patterns in student data, which domain experts
can then inspect to identify misconceptions. In this work, we present a novel
method for the semi-automated discovery of problem-specific misconceptions from
students' program code in computing courses, using a state-of-the-art code
classification model. We trained the model on a block-based programming dataset
and used the learned embedding to cluster incorrect student submissions. We
found these clusters correspond to specific misconceptions about the problem
and would not have been easily discovered with existing approaches. We also
discuss potential applications of our approach and how these misconceptions
inform domain-specific insights into students' learning processes.
- Abstract(参考訳): 生徒の誤解を理解することは効果的な指導と評価に重要である。
しかし、そのような誤解を手動で発見することは時間と労力を要する。
自動誤解発見(automated misconception discovery)は、学生データのパターンを強調することで、これらの課題に対処することができる。
本研究では,現状のコード分類モデルを用いて,コンピュータコースにおける生徒のプログラムコードから問題固有の誤解を半自動で発見する手法を提案する。
ブロックベースのプログラミングデータセットでモデルをトレーニングし、学習した埋め込みをクラスタの不正な学生の応募に使用しました。
これらのクラスターは問題に関する特定の誤解に対応しており、既存のアプローチでは容易には発見できなかった。
また、私たちのアプローチの潜在的な応用と、これらの誤解が学生の学習プロセスにドメイン固有の洞察をどう伝えるかについて議論します。
関連論文リスト
- Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
ドメインクラスのインクリメンタル学習は現実的だが、継続的な学習シナリオである。
これらの多様なタスクに対処するために、事前訓練されたビジョンランゲージモデル(VLM)を導入し、その強力な一般化性を実現する。
事前訓練されたVLMにエンコードされた知識は、新しいタスクに適応する際に妨げられ、固有のゼロショット能力を損なう。
既存の手法では、膨大なオーバーヘッドを必要とする余分なデータセットに知識蒸留でVLMをチューニングすることで、この問題に対処している。
我々は、事前学習した知識を保持できるDIKI(Distributed-Aware Interference-free Knowledge Integration)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-07T12:19:37Z) - Creating a Trajectory for Code Writing: Algorithmic Reasoning Tasks [0.923607423080658]
本稿では,楽器とその検証に用いる機械学習モデルについて述べる。
我々は,学期最後の週に導入プログラミングコースで収集したデータを用いてきた。
先行研究は、ARTタイプの楽器を特定の機械学習モデルと組み合わせて効果的な学習軌道として機能させることができることを示唆している。
論文 参考訳(メタデータ) (2024-04-03T05:07:01Z) - Identifying Student Profiles Within Online Judge Systems Using
Explainable Artificial Intelligence [6.638206014723678]
オンライン審査員(OJ)システムは通常、学生によって開発されたコードの高速かつ客観的な評価を得られるため、プログラミング関連のコースの中で考慮される。
本研究の目的は,OJが収集した情報のさらなる活用を考慮し,学生とインストラクターの両方のフィードバックを自動的に推測することで,この制限に対処することである。
論文 参考訳(メタデータ) (2024-01-29T12:11:30Z) - Explainable Data-Driven Optimization: From Context to Decision and Back
Again [76.84947521482631]
データ駆動最適化では、コンテキスト情報と機械学習アルゴリズムを使用して、不確実なパラメータによる決定問題の解決策を見つける。
本稿では,データ駆動型問題に対する解法を説明するために,対実的説明手法を提案する。
在庫管理やルーティングといった運用管理における重要な問題を説明することで,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2023-01-24T15:25:16Z) - Design Automation for Fast, Lightweight, and Effective Deep Learning
Models: A Survey [53.258091735278875]
本調査では,エッジコンピューティングを対象としたディープラーニングモデルの設計自動化技術について述べる。
これは、有効性、軽量性、計算コストの観点からモデルの習熟度を定量化するために一般的に使用される主要なメトリクスの概要と比較を提供する。
この調査は、ディープモデル設計自動化技術の最先端の3つのカテゴリをカバーしている。
論文 参考訳(メタデータ) (2022-08-22T12:12:43Z) - Automatic Classification of Error Types in Solutions to Programming
Assignments at Online Learning Platform [4.028503203417233]
プログラムの代入に対する自動検証システムのフィードバックを改善するため,機械学習手法を適用した。
我々は、以前に提出された不正なソリューションをクラスタリングし、これらのクラスタをラベル付けし、このラベル付きデータセットを使用して、新しいサブミッションにおけるエラーのタイプを特定することで、頻繁なエラータイプを検出する。
論文 参考訳(メタデータ) (2021-07-13T11:59:57Z) - Low-Regret Active learning [64.36270166907788]
トレーニングに最も有用なラベル付きデータポイントを識別するオンライン学習アルゴリズムを開発した。
私たちの仕事の中心は、予測可能な(簡単な)インスタンスの低い後悔を達成するために調整された睡眠専門家のための効率的なアルゴリズムです。
論文 参考訳(メタデータ) (2021-04-06T22:53:45Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
機械学習の研究は転換点にある。
研究の関心は、高度にパラメータ化されたモデルのパフォーマンス向上から、非常に具体的なタスクへとシフトしている。
このホワイトペーパーは、機械学習研究におけるこの新興分野の紹介と議論を提供する。
論文 参考訳(メタデータ) (2020-12-21T15:07:19Z) - A Survey of Machine Learning Methods and Challenges for Windows Malware
Classification [43.4550536920809]
調査は、マルウェア問題に機械学習を適用する方法についてより詳しく学びたいサイバーセキュリティ実践者や、データサイエンティストにこの独特な複雑な領域における課題に対する必要な背景を提供することの両方に有用である。
論文 参考訳(メタデータ) (2020-06-15T17:46:12Z) - Pattern Learning for Detecting Defect Reports and Improvement Requests
in App Reviews [4.460358746823561]
本研究では、レビューを欠陥報告と改善の要求として分類することで、この行動可能な洞察の欠如を狙う新しいアプローチに従う。
我々は,遺伝的プログラミングを通じて語彙・意味パターンを学習できる教師付きシステムを採用している。
自動学習パターンは手作業で生成したパターンよりも優れており、生成可能であることを示す。
論文 参考訳(メタデータ) (2020-04-19T08:13:13Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
ディープラーニングモデルのブラックボックスの性質は、彼らがデータから何を学ぶかについて、未回答の疑問を提起している。
GAN(Generative Adversarial Network)とマルチオブジェクトは、監査されたモデルに妥当な攻撃を与えるために使用される。
その実用性は人間の顔の分類タスクの中で示され、提案されたフレームワークの潜在的可能性を明らかにしている。
論文 参考訳(メタデータ) (2020-03-25T11:08:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。