論文の概要: Comparing Popular Simulation Environments in the Scope of Robotics and
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2103.04616v1
- Date: Mon, 8 Mar 2021 09:08:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-09 15:51:43.158185
- Title: Comparing Popular Simulation Environments in the Scope of Robotics and
Reinforcement Learning
- Title(参考訳): ロボットと強化学習のスコープにおける普及したシミュレーション環境の比較
- Authors: Marian K\"orber, Johann Lange, Stephan Rediske, Simon Steinmann,
Roland Gl\"uck
- Abstract要約: 選択したシミュレーション環境がシングルコア性能の恩恵を最も受けることを示す。
マルチコアシステムを使用すると、複数のシミュレーションを並列に実行して性能を向上させることができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This letter compares the performance of four different, popular simulation
environments for robotics and reinforcement learning (RL) through a series of
benchmarks. The benchmarked scenarios are designed carefully with current
industrial applications in mind. Given the need to run simulations as fast as
possible to reduce the real-world training time of the RL agents, the
comparison includes not only different simulation environments but also
different hardware configurations, ranging from an entry-level notebook up to a
dual CPU high performance server. We show that the chosen simulation
environments benefit the most from single core performance. Yet, using a multi
core system, multiple simulations could be run in parallel to increase the
performance.
- Abstract(参考訳): 本稿では,ロボット工学と強化学習(RL)の4種類のシミュレーション環境の性能を,一連のベンチマークを通じて比較する。
ベンチマークされたシナリオは、現在の産業アプリケーションを考慮して慎重に設計されます。
rlエージェントの実世界のトレーニング時間を短縮するためにできるだけ速くシミュレーションを実行する必要があるため、この比較には異なるシミュレーション環境だけでなく、エントリーレベルのノートブックからデュアルcpuハイパフォーマンスサーバまで、さまざまなハードウェア構成が含まれている。
選択したシミュレーション環境がシングルコア性能の恩恵を最も受けることを示す。
しかし、マルチコアシステムを使用すると、並列に複数のシミュレーションを実行して性能を向上させることができる。
関連論文リスト
- AI Metropolis: Scaling Large Language Model-based Multi-Agent Simulation with Out-of-order Execution [15.596642151634319]
AI Metropolisは、注文外実行スケジューリングを導入することで、LLMエージェントシミュレーションの効率を改善するシミュレーションエンジンである。
我々の評価では,グローバル同期を用いた標準並列シミュレーションにより,AI Metropolisは1.3倍から4.15倍の高速化を実現している。
論文 参考訳(メタデータ) (2024-11-05T21:54:14Z) - BeSimulator: A Large Language Model Powered Text-based Behavior Simulator [28.112491177744783]
本研究では,BeSimulatorをテキストベースの環境下での動作シミュレーションの試みとして紹介する。
BeSimulatorはシナリオを一般化し、長距離複素シミュレーションを実現する。
論文 参考訳(メタデータ) (2024-09-24T08:37:04Z) - Learning Quadruped Locomotion Using Differentiable Simulation [31.80380408663424]
微分可能シミュレーションは、高速収束と安定した訓練を約束する。
本研究はこれらの課題を克服するための新しい微分可能シミュレーションフレームワークを提案する。
我々のフレームワークは並列化なしで数分で四足歩行を学習できる。
論文 参考訳(メタデータ) (2024-03-21T22:18:59Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - QuadSim: A Quadcopter Rotational Dynamics Simulation Framework For
Reinforcement Learning Algorithms [0.0]
本研究は,数式に基づくクアッドコプター回転動力学シミュレーションフレームワークの設計と開発に焦点をあてる。
このフレームワークは、クワッドコプターの線形表現と非線形表現の両方をシミュレートすることを目的としている。
シミュレーション環境はOpenAI Gymツールキットと互換性を持つように拡張された。
論文 参考訳(メタデータ) (2022-02-14T20:34:08Z) - Parallel Simulation of Quantum Networks with Distributed Quantum State
Management [56.24769206561207]
我々は、量子ネットワークの並列シミュレーションの要件を特定し、最初の並列離散事象量子ネットワークシミュレータを開発する。
コントリビューションには、複数のプロセスに分散した共有量子情報を維持する量子状態マネージャの設計と開発が含まれています。
既存のシーケンシャルバージョンと並行してオープンソースツールとして,並列SeQUeNCeシミュレータをリリースする。
論文 参考訳(メタデータ) (2021-11-06T16:51:17Z) - Sim and Real: Better Together [47.14469055555684]
シミュレーションと実環境とのインタラクションの両方から同時に学習する方法を実証する。
本稿では,高いスループットから多数のサンプルのバランスをとるアルゴリズムを提案するが,精度は低い。
このような多環境相互作用を理論的に解析し、新しい理論的なリプレイバッファ解析により収束特性を提供する。
論文 参考訳(メタデータ) (2021-10-01T14:30:03Z) - SimNet: Computer Architecture Simulation using Machine Learning [3.7019798164954336]
この研究では、機械学習(ML)を使用して離散イベントシミュレーションを加速する共同作業について説明します。
提案した命令遅延予測器に基づいて,GPU加速並列シミュレータを実装した。
そのシミュレーション精度とスループットを、最先端シミュレータに対して検証し、評価する。
論文 参考訳(メタデータ) (2021-05-12T17:31:52Z) - DriveGAN: Towards a Controllable High-Quality Neural Simulation [147.6822288981004]
DriveGANと呼ばれる新しい高品質のニューラルシミュレータを紹介します。
DriveGANは、異なるコンポーネントを監督なしで切り離すことによって制御性を達成する。
実世界の運転データ160時間を含む複数のデータセットでdriveganをトレーニングします。
論文 参考訳(メタデータ) (2021-04-30T15:30:05Z) - Large Batch Simulation for Deep Reinforcement Learning [101.01408262583378]
我々は,視覚複雑な3次元環境における深層強化学習に基づく学習を,事前作業よりも2桁高速化する。
単一のGPUマシンで1秒間に19,000フレーム以上の経験と最大72,000フレーム/秒のエンドツーエンドのトレーニング速度を実現します。
バッチシミュレーションと性能最適化を組み合わせることで、1つのGPU上の複雑な3D環境において、従来の最先端システムでトレーニングされたエージェントの精度の97%から97%まで、ポイントナビゲーションエージェントをトレーニングできることを実証する。
論文 参考訳(メタデータ) (2021-03-12T00:22:50Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
本稿では,シミュレーションで学習したモデルやポリシーを現実世界に伝達することを目的とした,様々なアルゴリズムの研究のためのベンチマークとフレームワークを提案する。
我々は、様々なアルゴリズムの性能に関する洞察を特徴付け、提供するために、広く知られたシミュレーション環境の実験を行う。
我々の分析は、この分野の実践者にとって有用であり、sim-to-realアルゴリズムの動作と主特性について、より深い選択をすることができる。
論文 参考訳(メタデータ) (2020-11-17T22:24:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。