First Law of Quantum Thermodynamics in a Driven Open Two-Level System
- URL: http://arxiv.org/abs/2104.10691v2
- Date: Fri, 6 Aug 2021 08:08:58 GMT
- Title: First Law of Quantum Thermodynamics in a Driven Open Two-Level System
- Authors: Adri\'an Juan-Delgado and Aur\'elia Chenu
- Abstract summary: We show how contributions originally assigned to dissipation in the Lindblad equation can become coherent part assigned to work.
Our results illustrate the trajectory-dependent character of heat and work, and how contributions originally assigned to dissipation can become coherent part assigned to work.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Assigning the variations of internal energy into heat or work contributions
is a challenging task due to the fact that these properties are trajectory
dependent. A number of proposals have been put forward for open quantum systems
following an arbitrary dynamics. We here focus on non-equilibrium
thermodynamics of a two-level system and explore, in addition to the
conventional approach, two definitions motivated by either classical work or
heat, in which the driving Hamiltonian or the trajectory itself are
respectively used to set up a reference basis. We first give the thermodynamic
properties for an arbitrary dynamics and illustrate the results on the Bloch
sphere. Then, we solve the particular example of a periodically driven qubit
interacting with a dissipative and decoherence bath. Our results illustrate the
trajectory-dependent character of heat and work, and how contributions
originally assigned to dissipation in the Lindblad equation can become coherent
part assigned to work.
Related papers
- Graph theoretic analysis of three-terminal quantum dot thermocouples: Onsager relations and spin-thermoelectric effects [1.2718514021745038]
We map the Lindblad master equation onto a quantum transition network, capturing the key working principles for both reciprocal effects.
Our analysis reveals quantum thermodynamic networks encompassing both Coulomb interaction and spin-flipping processes, lead to the emergence of spin-thermolectric effects.
This underscores the universal generality of thermodynamic principles across classical and quantum realms.
arXiv Detail & Related papers (2023-11-28T06:35:02Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - On the First Law of Thermodynamics in Time-Dependent Open Quantum
Systems [0.0]
How to rigorously define thermodynamic quantities such as heat, work, and internal energy in open quantum systems driven far from equilibrium remains a significant open question in quantum thermodynamics.
Heat is a quantity whose fundamental definition applies only to processes in systems infinitesimally perturbed from equilibrium.
Heat is accounted for carefully in strongly-driven systems.
arXiv Detail & Related papers (2022-08-13T02:26:31Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Quantum Coherence and Ergotropy [0.0]
Constraints on work extraction are fundamental to our understanding of the thermodynamics of both classical and quantum systems.
In the quantum setting, finite-time control operations generate coherence in the instantaneous energy eigenbasis of the dynamical system.
We isolate and study the quantum coherent component to the work yield in such protocols.
arXiv Detail & Related papers (2020-06-09T17:50:13Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z) - Quantum thermodynamics of two bosonic systems [0.0]
We study the energy exchange between two bosonic systems that interact via bilinear transformations in the mode operators.
This work finds its roots in a very recent formulation of quantum thermodynamics.
arXiv Detail & Related papers (2020-01-14T09:19:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.