論文の概要: Entangled q-Convolutional Neural Nets
- arxiv url: http://arxiv.org/abs/2103.11785v1
- Date: Sat, 6 Mar 2021 02:35:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-05 00:58:30.165594
- Title: Entangled q-Convolutional Neural Nets
- Title(参考訳): 絡み合ったq畳み込みニューラルネットワーク
- Authors: Vassilis Anagiannis and Miranda C. N. Cheng
- Abstract要約: 機械学習モデル、q-CNNモデルを導入し、畳み込みニューラルネットワークと主要な機能を共有し、テンソルネットワーク記述を認めます。
例として、MNISTおよびFashion MNIST分類タスクにq-CNNを適用する。
ネットワークが各分類ラベルに量子状態をどのように関連付けるかを説明し、これらのネットワーク状態の絡み合い構造を研究する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a machine learning model, the q-CNN model, sharing key features
with convolutional neural networks and admitting a tensor network description.
As examples, we apply q-CNN to the MNIST and Fashion MNIST classification
tasks. We explain how the network associates a quantum state to each
classification label, and study the entanglement structure of these network
states. In both our experiments on the MNIST and Fashion-MNIST datasets, we
observe a distinct increase in both the left/right as well as the up/down
bipartition entanglement entropy during training as the network learns the fine
features of the data. More generally, we observe a universal negative
correlation between the value of the entanglement entropy and the value of the
cost function, suggesting that the network needs to learn the entanglement
structure in order the perform the task accurately. This supports the
possibility of exploiting the entanglement structure as a guide to design the
machine learning algorithm suitable for given tasks.
- Abstract(参考訳): 本稿では,畳み込みニューラルネットワークと重要な特徴を共有し,テンソルネットワーク記述を認める,機械学習モデルであるq-cnnモデルを提案する。
例として、MNISTおよびFashion MNIST分類タスクにq-CNNを適用する。
ネットワークが量子状態を分類ラベルとどのように関連づけるかを説明し、これらのネットワーク状態の絡み合い構造を研究する。
MNISTデータセットとFashion-MNISTデータセットの両方の実験では、ネットワークがデータの微細な特徴を学習するにつれて、トレーニング中の左右両分断エントロピーの増大が観察される。
より一般的には、絡み合いエントロピーの値とコスト関数の値との普遍的な負の相関を観測し、ネットワークが正確にタスクを実行するために絡み合い構造を学習する必要があることを示唆する。
これにより、与えられたタスクに適した機械学習アルゴリズムを設計するためのガイドとして、絡み合い構造を利用することができる。
関連論文リスト
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Deep Neural Networks via Complex Network Theory: a Perspective [3.1023851130450684]
ディープニューラルネットワーク(DNN)は、リンクと頂点が反復的にデータを処理し、タスクを亜最適に解くグラフとして表現することができる。複雑なネットワーク理論(CNT)は、統計物理学とグラフ理論を融合させ、その重みとニューロン構造を分析してニューラルネットワークを解釈する方法を提供する。
本研究では,DNNのトレーニング分布から抽出した測定値を用いて既存のCNTメトリクスを拡張し,純粋なトポロジカル解析からディープラーニングの解釈可能性へ移行する。
論文 参考訳(メタデータ) (2024-04-17T08:42:42Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Deep Neural Networks as Complex Networks [1.704936863091649]
我々は、重み付きグラフとしてディープニューラルネットワーク(DNN)を表現するために複雑ネットワーク理論を用いる。
我々は、DNNを動的システムとして研究するためのメトリクスを導入し、その粒度は、重みから神経細胞を含む層まで様々である。
我々の測定値が低性能ネットワークと高パフォーマンスネットワークを区別していることが示される。
論文 参考訳(メタデータ) (2022-09-12T16:26:04Z) - Mining the Weights Knowledge for Optimizing Neural Network Structures [1.995792341399967]
タスク固有のニューラルネットワーク(略してTNN)の重みを入力として使用するスイッチャーニューラルネットワーク(SNN)を導入する。
重みに含まれる知識をマイニングすることで、SNNはTNNのニューロンをオフにするスケーリング因子を出力する。
精度の面では,ベースラインネットワークやその他の構造学習手法を安定的に,かつ著しく上回っている。
論文 参考訳(メタデータ) (2021-10-11T05:20:56Z) - Characterizing Learning Dynamics of Deep Neural Networks via Complex
Networks [1.0869257688521987]
複素ネットワーク理論(CNT)は、ディープニューラルネットワーク(DNN)を重み付きグラフとして表現し、それらを動的システムとして研究する。
ノード/ニューロンとレイヤ、すなわちNodes StrengthとLayers Fluctuationのメトリクスを紹介します。
本フレームワークは,学習力学のトレンドを抽出し,高精度ネットワークから低次ネットワークを分離する。
論文 参考訳(メタデータ) (2021-10-06T10:03:32Z) - Mutual Information Scaling for Tensor Network Machine Learning [0.0]
本稿では,テンソルネットワーク機械学習における相関解析の適用方法を示す。
古典的データが量子状態に類似した相関スケーリングパターンを持つかどうかを考察する。
我々は,MNISTデータセットとTiny Imagesデータセットのスケーリングパターンを特徴付け,後者における境界法スケーリングの明確な証拠を見出す。
論文 参考訳(メタデータ) (2021-02-27T02:17:51Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
グラフ畳み込みネットワークは、構造化されたデータポイント間の関係をキャプチャするための最も有望なアプローチである。
マルチタスク方式でグラフベースニューラルネットワークモデルを学習するための3つの新しい自己教師付き補助タスクを提案する。
論文 参考訳(メタデータ) (2020-11-14T11:09:51Z) - Neural Complexity Measures [96.06344259626127]
本稿では,一般化を予測するメタラーニングフレームワークであるNeural Complexity(NC)を提案する。
我々のモデルは、データ駆動方式で、多くの異種タスクとの相互作用を通じてスカラー複雑性尺度を学習する。
論文 参考訳(メタデータ) (2020-08-07T02:12:10Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
ニューラルネットワークは、勾配に基づくトレーニングの過程で、そのサイズとトポロジの両方を学習できるフレキシブルなセットアップを導入します。
結果として得られるネットワークは、特定の学習タスクとデータセットに合わせたグラフの構造を持つ。
論文 参考訳(メタデータ) (2020-06-22T12:46:44Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。