Recovery of Joint Probability Distribution from one-way marginals: Low
rank Tensors and Random Projections
- URL: http://arxiv.org/abs/2103.11864v2
- Date: Wed, 24 Mar 2021 11:40:42 GMT
- Title: Recovery of Joint Probability Distribution from one-way marginals: Low
rank Tensors and Random Projections
- Authors: Jian Vora, Karthik S. Gurumoorthy, Ajit Rajwade
- Abstract summary: Joint probability mass function (PMF) estimation is a fundamental machine learning problem.
In this work, we link random projections of data to the problem of PMF estimation using ideas from tomography.
We provide a novel algorithm for recovering factors of the tensor from one-way marginals, test it across a variety of synthetic and real-world datasets, and also perform MAP inference on the estimated model for classification.
- Score: 2.9929093132587763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Joint probability mass function (PMF) estimation is a fundamental machine
learning problem. The number of free parameters scales exponentially with
respect to the number of random variables. Hence, most work on nonparametric
PMF estimation is based on some structural assumptions such as clique
factorization adopted by probabilistic graphical models, imposition of low rank
on the joint probability tensor and reconstruction from 3-way or 2-way
marginals, etc. In the present work, we link random projections of data to the
problem of PMF estimation using ideas from tomography. We integrate this idea
with the idea of low-rank tensor decomposition to show that we can estimate the
joint density from just one-way marginals in a transformed space. We provide a
novel algorithm for recovering factors of the tensor from one-way marginals,
test it across a variety of synthetic and real-world datasets, and also perform
MAP inference on the estimated model for classification.
Related papers
- Semiparametric conformal prediction [79.6147286161434]
Risk-sensitive applications require well-calibrated prediction sets over multiple, potentially correlated target variables.
We treat the scores as random vectors and aim to construct the prediction set accounting for their joint correlation structure.
We report desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Domain Generalization with Small Data [27.040070085669086]
We learn a domain-invariant representation based on the probabilistic framework by mapping each data point into probabilistic embeddings.
Our proposed method can marriage the measurement on the textitdistribution over distributions (i.e., the global perspective alignment) and the distribution-based contrastive semantic alignment.
arXiv Detail & Related papers (2024-02-09T02:59:08Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
Federated Learning (FL) typically aggregates client model parameters using a weighting approach determined by sample proportions.
We replace the aforementioned weighting method with a new strategy that considers the generalization bounds of each local model.
arXiv Detail & Related papers (2023-11-10T08:50:28Z) - Marginalization in Bayesian Networks: Integrating Exact and Approximate
Inference [0.0]
Missing data and hidden variables require calculating the marginal probability distribution of a subset of the variables.
We develop a divide-and-conquer approach using the graphical properties of Bayesian networks.
We present an efficient and scalable algorithm for estimating the marginal probability distribution for categorical variables.
arXiv Detail & Related papers (2021-12-16T21:49:52Z) - Information Theoretic Structured Generative Modeling [13.117829542251188]
A novel generative model framework called the structured generative model (SGM) is proposed that makes straightforward optimization possible.
The implementation employs a single neural network driven by an orthonormal input to a single white noise source adapted to learn an infinite Gaussian mixture model.
Preliminary results show that SGM significantly improves MINE estimation in terms of data efficiency and variance, conventional and variational Gaussian mixture models, as well as for training adversarial networks.
arXiv Detail & Related papers (2021-10-12T07:44:18Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Model-based multi-parameter mapping [0.0]
Quantitative MR imaging is increasingly favoured for its richer information content and standardised measures.
Estimations often assume noise subsets of data to solve for different quantities in isolation.
Instead, a generative model can be formulated and inverted to jointly recover parameter estimates.
arXiv Detail & Related papers (2021-02-02T17:00:11Z) - Recovering Joint Probability of Discrete Random Variables from Pairwise
Marginals [22.77704627076251]
Learning the joint probability of random variables (RVs) is the cornerstone of statistical signal processing and machine learning.
Recent work has proposed to recover the joint probability mass function (PMF) of an arbitrary number of RVs from three-dimensional marginals.
accurately estimating three-dimensional marginals can still be costly in terms of sample complexity.
This work puts forth a new framework for learning the joint PMF using only pairwise marginals.
arXiv Detail & Related papers (2020-06-30T15:43:44Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.