Electron cloud design for Rydberg multi-qubit gates
- URL: http://arxiv.org/abs/2111.01581v3
- Date: Sun, 29 Jan 2023 18:14:06 GMT
- Title: Electron cloud design for Rydberg multi-qubit gates
- Authors: Mohammadsadegh Khazali and Wolfgang Lechner
- Abstract summary: This article proposes quantum processing in an optical lattice, using Rydberg electron's Fermi scattering from ground-state atoms.
The interaction is controlled by engineering the electron cloud of a sole Rydberg atom.
The features in the new scheme are of special interest for the implementation of quantum optimization and error correction algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article proposes quantum processing in an optical lattice, using Rydberg
electron's Fermi scattering from ground-state atoms in spin-dependent lattices
as a source of interaction. Instead of relying on Rydberg pair potentials, the
interaction is controlled by engineering the electron cloud of a sole Rydberg
atom. Here we specifically propose the implementation of two prominent
multi-qubit gates i.e. the stabilizer-phase operator and the Toffoli gate. The
new scheme addresses the main bottleneck in Rydberg quantum simulation by
suppressing the population of short-lived Rydberg states over multi-qubit
operations. This scheme mitigates different competing infidelity criteria,
eliminates unwanted cross-talks, and allows operations in dense atomic
lattices. The restoring forces in the molecule type Ryd-Fermi potential
preserve the trapping over a long interaction period. The features in the new
scheme are of special interest for the implementation of quantum optimization
and error correction algorithms.
Related papers
- Fast entangling gates for Rydberg atoms via resonant dipole-dipole interaction [0.0]
We introduce a novel scheme for entangling gates using four atomic levels per atom: a ground state qubit and two Rydberg states.
We show that this interaction can mediate controlled-Z gates that are faster and less sensitive to Rydberg decay than state-of-the-art Rydberg gates.
arXiv Detail & Related papers (2024-11-07T19:00:08Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Floquet geometric entangling gates in ground-state manifolds of Rydberg atoms [0.49157446832511503]
We propose new applications of Floquet theory in Rydberg atoms for constructing quantum entangling gates.
Error-resilient two-qubit entangling gates can be implemented in the regime of Rydberg blockade.
arXiv Detail & Related papers (2024-05-01T12:15:48Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Anderson localization of a Rydberg electron [68.8204255655161]
Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the hydrogen atom.
limit is reached by simultaneously increasing the number of ground state atoms and the level of excitation of the Rydberg atom.
arXiv Detail & Related papers (2021-11-19T18:01:24Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Quantum Computing with Circular Rydberg Atoms [0.0]
We propose a novel approach to Rydberg atom arrays using long-lived circular Rydberg states in optical traps.
We project that arrays of hundreds of circular Rydberg atoms with two-qubit gate errors around $10-5$ can be realized using current technology.
arXiv Detail & Related papers (2021-03-23T18:00:00Z) - Resilient quantum gates on periodically driven Rydberg atoms [10.602950162554212]
The platform of Rydberg atoms is one of the most promising candidates for achieving quantum computation.
We propose a controlled-$Z$ gate on Rydberg atoms where an amplitude-modulated field is employed to induce Rydberg antiblockade.
We generalize the gate scheme into multiqubit cases, where resilient multiqubit phase gates can be obtained in one step with an unchanged gate time as the number of qubits increases.
arXiv Detail & Related papers (2021-01-07T02:13:18Z) - Optimized Geometric Quantum Computation with mesoscopic ensemble of
Rydberg Atoms [1.3124513975412255]
We propose a nonadiabatic non-Abelian geometric quantum operation scheme to realize universal quantum computation with Rydberg atoms.
We demonstrate theoretically that both the single qubit and two-qubit quantum gates can achieve high fidelities around or above 99.9% in ideal situations.
Our numerical simulations show that the average fidelity could be 99.98% for single ensemble qubit gate and 99.94% for two-qubit gate even when the Rabi frequency of the gate laser acquires 10% fluctuations.
arXiv Detail & Related papers (2020-09-08T13:11:22Z) - Rydberg Entangling Gates in Silicon [62.997667081978825]
We propose a new Rydberg entangling gate scheme which we demonstrate theoretically to have an order of magnitude improvement in fidelities and speed over existing protocols.
We find that applying this gate to donors in silicon would help overcome the strenuous requirements on atomic precision donor placement and substantial gate tuning.
We show that Rydberg gate operation is possible within the lifetime of donor excited states with 99.9% fidelity for the creation of a Bell state in the presence of decoherence.
arXiv Detail & Related papers (2020-08-26T18:00:02Z) - High-Fidelity Entanglement and Detection of Alkaline-Earth Rydberg Atoms [48.093689931392866]
Controlled two-qubit entanglement generation has so far been limited to alkali species.
We demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms.
We find fidelities for Rydberg state detection, single-atom Rabi operations, and two-atom entanglement surpassing previously published values.
arXiv Detail & Related papers (2020-01-13T18:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.