論文の概要: Czert -- Czech BERT-like Model for Language Representation
- arxiv url: http://arxiv.org/abs/2103.13031v1
- Date: Wed, 24 Mar 2021 07:27:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-25 14:07:11.694299
- Title: Czert -- Czech BERT-like Model for Language Representation
- Title(参考訳): czert - チェコのbertライクな言語表現モデル
- Authors: Jakub Sido, Ond\v{r}ej Pra\v{z}\'ak, Pavel P\v{r}ib\'a\v{n}, Jan
Pa\v{s}ek, Michal Sej\'ak, Miloslav Konop\'ik
- Abstract要約: 本稿では, BERT と ALBERT アーキテクチャに基づく最初のチェコ語単言語表現モデルの学習過程について述べる。
私たちは、チェコのデータを含む多言語モデルよりも50倍多い340K以上の文でモデルを事前にトレーニングします。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper describes the training process of the first Czech monolingual
language representation models based on BERT and ALBERT architectures. We
pre-train our models on more than 340K of sentences, which is 50 times more
than multilingual models that include Czech data. We outperform the
multilingual models on 7 out of 10 datasets. In addition, we establish the new
state-of-the-art results on seven datasets. At the end, we discuss properties
of monolingual and multilingual models based upon our results. We publish all
the pre-trained and fine-tuned models freely for the research community.
- Abstract(参考訳): 本稿では, BERT と ALBERT アーキテクチャに基づく最初のチェコ語単言語表現モデルの学習過程について述べる。
チェコ語データを含む多言語モデルの50倍の340k以上の文に対して,事前学習を行いました。
私たちは10のデータセットのうち7つで多言語モデルより優れています。
さらに,7つのデータセットで最新の結果が得られた。
最後に,結果に基づく単言語モデルと多言語モデルの性質について考察する。
研究コミュニティのために、事前訓練されたモデルと微調整されたモデルをすべて自由に公開します。
関連論文リスト
- Multilingual E5 Text Embeddings: A Technical Report [63.503320030117145]
異なるサイズの3つの埋め込みモデルを提供し、推論効率と埋め込み品質のバランスを提供する。
そこで我々は,新しい命令調整型埋め込みモデルを導入し,その性能は類似サイズの最先端の英語のみのモデルと同等である。
論文 参考訳(メタデータ) (2024-02-08T13:47:50Z) - CroissantLLM: A Truly Bilingual French-English Language Model [42.03897426049679]
英語とフランス語のトークンセットを事前訓練した1.3B言語モデルであるCroissantLLMを紹介する。
我々は、英語とフランス語の事前学習データ比率1:1で、本質的なバイリンガルモデルを訓練するアプローチを開拓した。
英語以外のパフォーマンスを評価するため、新しいベンチマークである FrenchBench を作成します。
論文 参考訳(メタデータ) (2024-02-01T17:17:55Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
我々は6400億(B)トークンでトレーニングされた多言語大言語モデル(LLM)であるPolyLMについて述べる。
その多言語的能力を高めるために,1) バイリンガルデータをトレーニングデータに統合し,2) 事前学習中に英語以外のデータの比率を30%から60%に引き上げるカリキュラム学習戦略を採用する。
さらに,モデル微調整のために,132.7Kの多言語命令を自動的に生成する多言語自己指示手法を提案する。
論文 参考訳(メタデータ) (2023-07-12T09:00:37Z) - Czech Dataset for Cross-lingual Subjectivity Classification [13.70633147306388]
そこで本研究では,映画レビューや説明文から10kの注釈付き主観的,客観的な文を手作業で作成する新しいチェコ語主観性データセットを提案する。
2つのアノテータはデータセットにコーエンのカッパ間アノテータ契約の0.83に達した。
新しいデータセットの単一言語ベースラインを設定するために、トレーニング済みのBERT風モデルを5つ微調整し、93.56%の精度を達成する。
論文 参考訳(メタデータ) (2022-04-29T07:31:46Z) - Training dataset and dictionary sizes matter in BERT models: the case of
Baltic languages [0.0]
我々はリトアニア語、ラトビア語、英語の3言語モデルLitLat BERTとエストニア語の単言語モデルEst-RoBERTaを訓練する。
提案手法は,エンティティ認識,依存性解析,パート・オブ・音声タグ付け,単語類似処理の4つのダウンストリームタスクにおいて,その性能を評価する。
論文 参考訳(メタデータ) (2021-12-20T14:26:40Z) - Language Models are Few-shot Multilingual Learners [66.11011385895195]
我々は、非英語言語における多言語分類を行う際に、GPTモデルとT5モデルの多言語的スキルを評価する。
文脈としての英語の例を見ると、事前学習された言語モデルは、英語のテストサンプルだけでなく、英語以外のサンプルも予測できることが示されている。
論文 参考訳(メタデータ) (2021-09-16T03:08:22Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z) - Multilingual Translation with Extensible Multilingual Pretraining and
Finetuning [77.33262578776291]
これまでの研究は、bitextで微調整することで機械翻訳システムを作成できることを実証してきた。
多言語翻訳モデルは多言語微調整により作成可能であることを示す。
事前訓練されたモデルは、性能を損なうことなく、追加の言語を組み込むように拡張できることを実証する。
論文 参考訳(メタデータ) (2020-08-02T05:36:55Z) - WikiBERT models: deep transfer learning for many languages [1.3455090151301572]
ウィキペディアデータから言語固有のBERTモデルを作成するための、単純で完全に自動化されたパイプラインを導入します。
我々は,これらのモデルの有効性を,Universal Dependenciesデータに基づく最先端のUDifyを用いて評価する。
論文 参考訳(メタデータ) (2020-06-02T11:57:53Z) - ParsBERT: Transformer-based Model for Persian Language Understanding [0.7646713951724012]
本稿ではペルシャ語用単言語BERT(ParsBERT)を提案する。
他のアーキテクチャや多言語モデルと比較すると、最先端のパフォーマンスを示している。
ParsBERTは、既存のデータセットや合成データセットを含む、すべてのデータセットでより高いスコアを取得する。
論文 参考訳(メタデータ) (2020-05-26T05:05:32Z) - Structure-Level Knowledge Distillation For Multilingual Sequence
Labeling [73.40368222437912]
本稿では,複数の単言語モデルの構造的知識を統一多言語モデル(学生)に蒸留することにより,単言語モデルと統一多言語モデルとのギャップを低減することを提案する。
25のデータセットを用いた4つの多言語タスクの実験により、我々のアプローチはいくつかの強いベースラインを上回り、ベースラインモデルと教師モデルの両方よりも強力なゼロショット一般化性を有することが示された。
論文 参考訳(メタデータ) (2020-04-08T07:14:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。