論文の概要: Learning Temporal Quantum Tomography
- arxiv url: http://arxiv.org/abs/2103.13973v1
- Date: Thu, 25 Mar 2021 17:01:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 13:20:29.765322
- Title: Learning Temporal Quantum Tomography
- Title(参考訳): 時間量子トモグラフィーの学習
- Authors: Quoc Hoan Tran and Kohei Nakajima
- Abstract要約: 量子状態の準備における制御レベルの定量化と検証は、量子デバイス構築における中心的な課題である。
本稿では,機械学習フレームワークを用いた実用的近似トモグラフィ法を開発した。
量子学習タスクのためのアルゴリズムを実証し、その後、量子短期記憶容量を提案して、短期量子デバイスの時間的処理能力を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantifying and verifying the control level in preparing a quantum state are
central challenges in building quantum devices. The quantum state is
characterized from experimental measurements, using a procedure known as
tomography, which requires a vast number of resources. Furthermore, the
tomography for a quantum device with temporal processing, which is
fundamentally different from the standard tomography, has not been formulated.
We develop a practical and approximate tomography method using a recurrent
machine learning framework for this intriguing situation. The method is based
on repeated quantum interactions between a system called quantum reservoir with
a stream of quantum states. Measurement data from the reservoir are connected
to a linear readout to train a recurrent relation between quantum channels
applied to the input stream. We demonstrate our algorithms for quantum learning
tasks followed by the proposal of a quantum short-term memory capacity to
evaluate the temporal processing ability of near-term quantum devices.
- Abstract(参考訳): 量子状態の準備における制御レベルの定量化と検証は、量子デバイス構築における中心的な課題である。
量子状態は実験的な測定によって特徴づけられ、トモグラフィーと呼ばれる手順で大量の資源を必要とする。
さらに,時間処理を施した量子デバイスのトモグラフィは標準トモグラフィと根本的に異なるが,定式化されていない。
そこで本稿では,この興味深い状況に対する機械学習フレームワークを用いた実用的および近似トモグラフィー手法を提案する。
この方法は、量子状態の流れを持つ量子貯水池と呼ばれるシステム間の繰り返し量子相互作用に基づいている。
貯留層からの計測データは線形読み出しに接続され、入力ストリームに適用された量子チャネル間の繰り返し関係を訓練する。
量子学習タスクのためのアルゴリズムを実証し、その後、量子短期記憶容量を提案して、短期量子デバイスの時間的処理能力を評価する。
関連論文リスト
- Quantum machine learning via continuous-variable cluster states and teleportation [2.473948454680334]
フォトニックプラットフォームに分散量子機械学習とメモリ表示に適した新しいアプローチを提案する。
この測定に基づく量子貯水池計算は、主量子資源として連続的な可変クラスター状態を利用する。
論文 参考訳(メタデータ) (2024-11-11T12:11:16Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
最大70個の超伝導量子ビット上の測定誘起量子情報相について検討した。
二重性マッピングを用いて、中間回路の測定を回避し、基礎となる位相の異なる表現にアクセスする。
我々の研究は、現在のNISQプロセッサの限界であるスケールでの計測誘起物理を実現するためのアプローチを示す。
論文 参考訳(メタデータ) (2023-03-08T18:41:53Z) - Detecting Quantum Capacities of Continuous-Variable Quantum Channels [0.7614628596146599]
本稿では,連続的な可変通信チャネルとメモリの量子容量を全プロセストモグラフィーを行うことなく検出する手法を提案する。
本手法は、デバイスを有限回使用し、複数の用途にまたがって相関を示すことができ、悪意のある敵の制御下で動的に変化するという一般的なシナリオで機能する。
論文 参考訳(メタデータ) (2021-08-30T16:18:39Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Variational Quantum Anomaly Detection: Unsupervised mapping of phase
diagrams on a physical quantum computer [0.0]
量子シミュレーションから量子データを解析するための教師なし量子機械学習アルゴリズムである変分量子異常検出を提案する。
このアルゴリズムは、事前の物理的知識を持たないシステムの位相図を抽出するために用いられる。
現在ではアクセスしやすいデバイスで使用でき、実際の量子コンピュータ上でアルゴリズムを実行することができる。
論文 参考訳(メタデータ) (2021-06-15T06:54:47Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
想像時間における進化は、量子多体系の基底状態を見つけるための顕著な技術である。
本稿では,量子コンピュータ上での仮想時間伝搬を実現するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z) - Quantum walk processes in quantum devices [55.41644538483948]
グラフ上の量子ウォークを量子回路として表現する方法を研究する。
提案手法は,量子ウォークアルゴリズムを量子コンピュータ上で効率的に実装する方法である。
論文 参考訳(メタデータ) (2020-12-28T18:04:16Z) - Reconstructing quantum states with quantum reservoir networks [4.724825031148412]
我々は貯水池計算の枠組みに基づく量子状態トモグラフィープラットフォームを導入する。
量子ニューラルネットワークを形成し、任意の量子状態を再構築するための包括的なデバイスとして機能する。
論文 参考訳(メタデータ) (2020-08-14T14:01:55Z) - Quantum process tomography with unsupervised learning and tensor
networks [0.0]
本稿では,量子プロセストモグラフィーを行う新しい手法を提案する。
チャネルのテンソルネットワーク表現と、教師なし機械学習にインスパイアされたデータ駆動最適化を組み合わせる。
私たちの結果は最先端以上のもので、現在の量子コンピュータと短期量子コンピュータで量子回路をベンチマークするための実用的でタイムリーなツールを提供しています。
論文 参考訳(メタデータ) (2020-06-03T17:54:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。