POINT$^{2}$: A Polymer Informatics Training and Testing Database
- URL: http://arxiv.org/abs/2503.23491v1
- Date: Sun, 30 Mar 2025 15:46:01 GMT
- Title: POINT$^{2}$: A Polymer Informatics Training and Testing Database
- Authors: Jiaxin Xu, Gang Liu, Ruilan Guo, Meng Jiang, Tengfei Luo,
- Abstract summary: POINT$2$ (POlymer INformatics Training and Testing) is a benchmark database and protocol designed to address critical challenges in polymer informatics.<n>We develop an ensemble of ML models, including Quantile Random Forests, Multilayer Perceptrons with dropout, Graph Neural Networks, and pretrained large language models.<n>These models are coupled with diverse polymer representations such as Morgan, MACCS, RDKit, Topological, Atom Pair fingerprints, and graph-based descriptors.
- Score: 15.45788515943579
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advancement of polymer informatics has been significantly propelled by the integration of machine learning (ML) techniques, enabling the rapid prediction of polymer properties and expediting the discovery of high-performance polymeric materials. However, the field lacks a standardized workflow that encompasses prediction accuracy, uncertainty quantification, ML interpretability, and polymer synthesizability. In this study, we introduce POINT$^{2}$ (POlymer INformatics Training and Testing), a comprehensive benchmark database and protocol designed to address these critical challenges. Leveraging the existing labeled datasets and the unlabeled PI1M dataset, a collection of approximately one million virtual polymers generated via a recurrent neural network trained on the realistic polymers, we develop an ensemble of ML models, including Quantile Random Forests, Multilayer Perceptrons with dropout, Graph Neural Networks, and pretrained large language models. These models are coupled with diverse polymer representations such as Morgan, MACCS, RDKit, Topological, Atom Pair fingerprints, and graph-based descriptors to achieve property predictions, uncertainty estimations, model interpretability, and template-based polymerization synthesizability across a spectrum of properties, including gas permeability, thermal conductivity, glass transition temperature, melting temperature, fractional free volume, and density. The POINT$^{2}$ database can serve as a valuable resource for the polymer informatics community for polymer discovery and optimization.
Related papers
- A machine learning platform for development of low flammability polymers [42.758516311179534]
Flammability index (FI) and cone calorimetry outcomes, such as maximum heat release rate, time to ignition, total smoke release, and fire growth rate, are critical factors in evaluating the fire safety of polymers.
In this work, we investigate the use of machine learning (ML) techniques to predict these flammability metrics.
arXiv Detail & Related papers (2025-03-31T20:50:29Z) - Multimodal machine learning with large language embedding model for polymer property prediction [2.525624865489335]
We propose a simple yet effective multimodal architecture, PolyLLMem, for polymer properties prediction tasks.<n>PolyLLMem integrates text embeddings generated by Llama 3 with molecular structure embeddings derived from Uni-Mol.<n>Its performance is comparable to, and in some cases exceeds, that of graph-based models, as well as transformer-based models.
arXiv Detail & Related papers (2025-03-29T03:48:11Z) - MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science [62.96434290874878]
Current Multi-Modal Large Language Models (MLLM) have shown strong capabilities in general visual reasoning tasks.<n>We develop a new framework, named Multi-Modal Scientific Reasoning with Physics Perception and Simulation (MAPS) based on an MLLM.<n>MAPS decomposes expert-level multi-modal reasoning task into physical diagram understanding via a Physical Perception Model (PPM) and reasoning with physical knowledge via a simulator.
arXiv Detail & Related papers (2025-01-18T13:54:00Z) - PolSAM: Polarimetric Scattering Mechanism Informed Segment Anything Model [76.95536611263356]
PolSAR data presents unique challenges due to its rich and complex characteristics.<n>Existing data representations, such as complex-valued data, polarimetric features, and amplitude images, are widely used.<n>Most feature extraction networks for PolSAR are small, limiting their ability to capture features effectively.<n>We propose the Polarimetric Scattering Mechanism-Informed SAM (PolSAM), an enhanced Segment Anything Model (SAM) that integrates domain-specific scattering characteristics and a novel prompt generation strategy.
arXiv Detail & Related papers (2024-12-17T09:59:53Z) - Molecular topological deep learning for polymer property prediction [18.602659324026934]
We develop molecular topological deep learning (Mol-TDL) for polymer property analysis.
Mol-TDL incorporates both high-order interactions and multiscale properties into topological deep learning architecture.
arXiv Detail & Related papers (2024-10-07T05:44:02Z) - Photonic Quantum Computing For Polymer Classification [62.997667081978825]
Two polymer classes visual (VIS) and near-infrared (NIR) are defined based on the size of the polymer gaps.
We present a hybrid classical-quantum approach to the binary classification of polymer structures.
arXiv Detail & Related papers (2022-11-22T11:59:52Z) - TransPolymer: a Transformer-based language model for polymer property
predictions [9.04563945965023]
TransPolymer is a Transformer-based language model for polymer property prediction.
Our proposed polymer tokenizer with chemical awareness enables learning representations from polymer sequences.
arXiv Detail & Related papers (2022-09-03T01:29:59Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - Copolymer Informatics with Multi-Task Deep Neural Networks [0.0]
We address the property prediction challenge for copolymers, extending the polymer informatics framework beyond homopolymers.
A large data set containing over 18,000 data points of glass transition, melting, and degradation temperature of homopolymers and copolymers of up to two monomers is used.
The developed models are accurate, fast, flexible, and scalable to more copolymer properties when suitable data become available.
arXiv Detail & Related papers (2021-03-25T23:28:20Z) - Polymers for Extreme Conditions Designed Using Syntax-Directed
Variational Autoencoders [53.34780987686359]
Machine learning tools are now commonly employed to virtually screen material candidates with desired properties.
This approach is inefficient, and severely constrained by the candidates that human imagination can conceive.
We utilize syntax-directed variational autoencoders (VAE) in tandem with Gaussian process regression (GPR) models to discover polymers expected to be robust under three extreme conditions.
arXiv Detail & Related papers (2020-11-04T21:36:59Z) - Polymer Informatics: Current Status and Critical Next Steps [1.3238373064156097]
Surrogate models are trained on available polymer data for instant property prediction.
Data-driven strategies to tackle unique challenges resulting from the extraordinary chemical and physical diversity of polymers at small and large scales are being explored.
Methods to solve inverse problems, wherein polymer recommendations are made using advanced AI algorithms that meet application targets, are being investigated.
arXiv Detail & Related papers (2020-11-01T14:17:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.