Weakly-Supervised Domain Adaptation of Deep Regression Trackers via
Reinforced Knowledge Distillation
- URL: http://arxiv.org/abs/2103.14496v1
- Date: Fri, 26 Mar 2021 14:37:33 GMT
- Title: Weakly-Supervised Domain Adaptation of Deep Regression Trackers via
Reinforced Knowledge Distillation
- Authors: Matteo Dunnhofer, Niki Martinel, Christian Micheloni
- Abstract summary: We present the first methodology for domain adaption of such a class of trackers.
We propose a weakly-supervised adaptation strategy, in which reinforcement learning is used to express weak supervision.
Experiments on five different robotic vision domains demonstrate the relevance of our methodology.
- Score: 27.00282405409842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep regression trackers are among the fastest tracking algorithms available,
and therefore suitable for real-time robotic applications. However, their
accuracy is inadequate in many domains due to distribution shift and
overfitting. In this paper we overcome such limitations by presenting the first
methodology for domain adaption of such a class of trackers. To reduce the
labeling effort we propose a weakly-supervised adaptation strategy, in which
reinforcement learning is used to express weak supervision as a scalar
application-dependent and temporally-delayed feedback. At the same time,
knowledge distillation is employed to guarantee learning stability and to
compress and transfer knowledge from more powerful but slower trackers.
Extensive experiments on five different robotic vision domains demonstrate the
relevance of our methodology. Real-time speed is achieved on embedded devices
and on machines without GPUs, while accuracy reaches significant results.
Related papers
- PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
Multiple object tracking is a critical task in autonomous driving.
As tracking accuracy improves, neural networks become increasingly complex, posing challenges for their practical application in real driving scenarios due to the high level of latency.
In this paper, we explore the use of the neural architecture search (NAS) methods to search for efficient architectures for tracking, aiming for low real-time latency while maintaining relatively high accuracy.
arXiv Detail & Related papers (2024-03-23T04:18:49Z) - DTC: Deep Tracking Control [16.2850135844455]
We propose a hybrid control architecture that combines the advantages of both worlds to achieve greater robustness, foot-placement accuracy, and terrain generalization.
A deep neural network policy is trained in simulation, aiming to track the optimized footholds.
We demonstrate superior robustness in the presence of slippery or deformable ground when compared to model-based counterparts.
arXiv Detail & Related papers (2023-09-27T07:57:37Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Efficient Concept Drift Handling for Batch Android Malware Detection
Models [0.0]
We show how retraining techniques are able to maintain detector capabilities over time.
Our experiments show that concept drift detection and sample selection mechanisms result in very efficient retraining strategies.
arXiv Detail & Related papers (2023-09-18T14:28:18Z) - Temporal Patience: Efficient Adaptive Deep Learning for Embedded Radar
Data Processing [4.359030177348051]
This paper presents novel techniques that leverage the temporal correlation present in streaming radar data to enhance the efficiency of Early Exit Neural Networks for Deep Learning inference on embedded devices.
Our results demonstrate that our techniques save up to 26% of operations per inference over a Single Exit Network and 12% over a confidence-based Early Exit version.
Such efficiency gains enable real-time radar data processing on resource-constrained platforms, allowing for new applications in the context of smart homes, Internet-of-Things, and human-computer interaction.
arXiv Detail & Related papers (2023-09-11T12:38:01Z) - Actively Learning Costly Reward Functions for Reinforcement Learning [56.34005280792013]
We show that it is possible to train agents in complex real-world environments orders of magnitudes faster.
By enabling the application of reinforcement learning methods to new domains, we show that we can find interesting and non-trivial solutions.
arXiv Detail & Related papers (2022-11-23T19:17:20Z) - Recursive Least-Squares Estimator-Aided Online Learning for Visual
Tracking [58.14267480293575]
We propose a simple yet effective online learning approach for few-shot online adaptation without requiring offline training.
It allows an in-built memory retention mechanism for the model to remember the knowledge about the object seen before.
We evaluate our approach based on two networks in the online learning families for tracking, i.e., multi-layer perceptrons in RT-MDNet and convolutional neural networks in DiMP.
arXiv Detail & Related papers (2021-12-28T06:51:18Z) - Adversarial Imitation Learning with Trajectorial Augmentation and
Correction [61.924411952657756]
We introduce a novel augmentation method which preserves the success of the augmented trajectories.
We develop an adversarial data augmented imitation architecture to train an imitation agent using synthetic experts.
Experiments show that our data augmentation strategy can improve accuracy and convergence time of adversarial imitation.
arXiv Detail & Related papers (2021-03-25T14:49:32Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
We propose a novel unsupervised domain adaptation framework which can simultaneously transfer multi-modality knowledge, i.e., both kinematic and visual data, from simulator to real robot.
It remedies the domain gap with enhanced transferable features by using temporal cues in videos, and inherent correlations in multi-modal towards recognizing gesture.
Results show that our approach recovers the performance with great improvement gains, up to 12.91% in ACC and 20.16% in F1score without using any annotations in real robot.
arXiv Detail & Related papers (2021-03-06T09:10:03Z) - Confidence Trigger Detection: Accelerating Real-time Tracking-by-detection Systems [1.6037469030022993]
Confidence-Triggered Detection (CTD) is an innovative approach that strategically bypasses object detection for frames closely resembling intermediate states.
CTD not only enhances tracking speed but also preserves accuracy, surpassing existing tracking algorithms.
Our experiments underscore the robustness and versatility of the CTD framework, demonstrating its potential to enable real-time tracking in resource-constrained environments.
arXiv Detail & Related papers (2019-02-02T01:52:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.