Developing Medical AI : a cloud-native audio-visual data collection
study
- URL: http://arxiv.org/abs/2110.03660v1
- Date: Tue, 17 Aug 2021 18:01:12 GMT
- Title: Developing Medical AI : a cloud-native audio-visual data collection
study
- Authors: Sagi Schein, Greg Arutiunian, Vitaly Burshtein, Gal Sadeh, Michelle
Townshend, Bruce Friedman, Shada Sadr-azodi
- Abstract summary: This paper describes a protocol for audio-visual data collection study, a cloud-architecture for efficiently processing and consuming such data, and the design of a specific data collection device.
The goal of this paper is to improve early identification of deteriorating patients in the hospital.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing Artificial Intelligence (AI) solutions that can operate in
real-world situations is a highly complex task. Deploying such solutions in the
medical domain is even more challenging. The promise of using AI to improve
patient care and reduce cost has encouraged many companies to undertake such
endeavours. For our team, the goal has been to improve early identification of
deteriorating patients in the hospital. Identifying patient deterioration in
lower acuity wards relies, to a large degree on the attention and intuition of
clinicians, rather than on the presence of physiological monitoring devices. In
these care areas, an automated tool which could continuously observe patients
and notify the clinical staff of suspected deterioration, would be extremely
valuable. In order to develop such an AI-enabled tool, a large collection of
patient images and audio correlated with corresponding vital signs, past
medical history and clinical outcome would be indispensable. To the best of our
knowledge, no such public or for-pay data set currently exists. This lack of
audio-visual data led to the decision to conduct exactly such study. The main
contributions of this paper are, the description of a protocol for audio-visual
data collection study, a cloud-architecture for efficiently processing and
consuming such data, and the design of a specific data collection device.
Related papers
- TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - Practical Applications of Advanced Cloud Services and Generative AI Systems in Medical Image Analysis [17.4235794108467]
The article explores the transformative potential of generative AI in medical imaging, emphasizing its ability to generate syntheticACM-2 data.
By addressing limitations in dataset size and diversity, these models contribute to more accurate diagnoses and improved patient outcomes.
arXiv Detail & Related papers (2024-03-26T09:55:49Z) - README: Bridging Medical Jargon and Lay Understanding for Patient Education through Data-Centric NLP [9.432205523734707]
We introduce a new task of automatically generating lay definitions, aiming to simplify medical terms into patient-friendly lay language.
We first created the dataset, an extensive collection of over 50,000 unique (medical term, lay definition) pairs and 300,000 mentions.
We have also engineered a data-centric Human-AI pipeline that synergizes data filtering, augmentation, and selection to improve data quality.
arXiv Detail & Related papers (2023-12-24T23:01:00Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
arXiv Detail & Related papers (2023-10-28T12:08:03Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
arXiv Detail & Related papers (2023-03-23T04:47:46Z) - AI-Enhanced Intensive Care Unit: Revolutionizing Patient Care with Pervasive Sensing [2.8688584757794064]
The intensive care unit (ICU) is a specialized hospital space where critically ill patients receive intensive care and monitoring.
Comprehensive monitoring is imperative in assessing patients conditions, in particular acuity, and ultimately the quality of care.
Currently, visual assessments for acuity, including fine details such as facial expressions, posture, and mobility, are sporadically captured, or not captured at all.
arXiv Detail & Related papers (2023-03-11T00:25:55Z) - AI Approaches in Processing and Using Data in Personalized Medicine [0.0]
Advanced artificial intelligence techniques offer the opportunity to analyze such big data, consume them, and derive new knowledge to support personalized medical decisions.
New approaches like those based on advanced machine learning, federated learning, transfer learning, explainable artificial intelligence open new paths for more quality use of health and medical data in future.
arXiv Detail & Related papers (2022-07-26T11:11:39Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - A Methodology for a Scalable, Collaborative, and Resource-Efficient
Platform to Facilitate Healthcare AI Research [0.0]
We present a system to accelerate data acquisition, dataset development and analysis, and AI model development.
This system can ingest 15,000 patient records per hour, where each record represents thousands of measurements, text notes, and high resolution data.
arXiv Detail & Related papers (2021-12-13T18:39:10Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.