Developing Medical AI : a cloud-native audio-visual data collection
study
- URL: http://arxiv.org/abs/2110.03660v1
- Date: Tue, 17 Aug 2021 18:01:12 GMT
- Title: Developing Medical AI : a cloud-native audio-visual data collection
study
- Authors: Sagi Schein, Greg Arutiunian, Vitaly Burshtein, Gal Sadeh, Michelle
Townshend, Bruce Friedman, Shada Sadr-azodi
- Abstract summary: This paper describes a protocol for audio-visual data collection study, a cloud-architecture for efficiently processing and consuming such data, and the design of a specific data collection device.
The goal of this paper is to improve early identification of deteriorating patients in the hospital.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing Artificial Intelligence (AI) solutions that can operate in
real-world situations is a highly complex task. Deploying such solutions in the
medical domain is even more challenging. The promise of using AI to improve
patient care and reduce cost has encouraged many companies to undertake such
endeavours. For our team, the goal has been to improve early identification of
deteriorating patients in the hospital. Identifying patient deterioration in
lower acuity wards relies, to a large degree on the attention and intuition of
clinicians, rather than on the presence of physiological monitoring devices. In
these care areas, an automated tool which could continuously observe patients
and notify the clinical staff of suspected deterioration, would be extremely
valuable. In order to develop such an AI-enabled tool, a large collection of
patient images and audio correlated with corresponding vital signs, past
medical history and clinical outcome would be indispensable. To the best of our
knowledge, no such public or for-pay data set currently exists. This lack of
audio-visual data led to the decision to conduct exactly such study. The main
contributions of this paper are, the description of a protocol for audio-visual
data collection study, a cloud-architecture for efficiently processing and
consuming such data, and the design of a specific data collection device.
Related papers
- Integrating Generative Artificial Intelligence in ADRD: A Framework for Streamlining Diagnosis and Care in Neurodegenerative Diseases [0.0]
We propose that large language models (LLMs) offer more immediately practical applications by enhancing clinicians' capabilities.
We present a framework for responsible AI integration that leverages LLMs' ability to communicate effectively with both patients and providers.
This approach prioritizes standardized, high-quality data collection to enable a system that learns from every patient encounter.
arXiv Detail & Related papers (2025-02-06T19:09:11Z) - Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.
Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.
Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.
Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - README: Bridging Medical Jargon and Lay Understanding for Patient Education through Data-Centric NLP [9.432205523734707]
We introduce a new task of automatically generating lay definitions, aiming to simplify medical terms into patient-friendly lay language.
We first created the dataset, an extensive collection of over 50,000 unique (medical term, lay definition) pairs and 300,000 mentions.
We have also engineered a data-centric Human-AI pipeline that synergizes data filtering, augmentation, and selection to improve data quality.
arXiv Detail & Related papers (2023-12-24T23:01:00Z) - AI-Enhanced Intensive Care Unit: Revolutionizing Patient Care with Pervasive Sensing [2.7503982558916906]
The intensive care unit (ICU) is a specialized hospital space where critically ill patients receive intensive care and monitoring.
Comprehensive monitoring is imperative in assessing patients conditions, in particular acuity, and ultimately the quality of care.
Currently, visual assessments for acuity, including fine details such as facial expressions, posture, and mobility, are sporadically captured, or not captured at all.
arXiv Detail & Related papers (2023-03-11T00:25:55Z) - AI Approaches in Processing and Using Data in Personalized Medicine [0.0]
Advanced artificial intelligence techniques offer the opportunity to analyze such big data, consume them, and derive new knowledge to support personalized medical decisions.
New approaches like those based on advanced machine learning, federated learning, transfer learning, explainable artificial intelligence open new paths for more quality use of health and medical data in future.
arXiv Detail & Related papers (2022-07-26T11:11:39Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.