論文の概要: Classically optimal variational quantum algorithms
- arxiv url: http://arxiv.org/abs/2103.17065v1
- Date: Wed, 31 Mar 2021 13:33:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-06 01:08:16.637424
- Title: Classically optimal variational quantum algorithms
- Title(参考訳): 古典的最適変分量子アルゴリズム
- Authors: Jonathan Wurtz and Peter Love
- Abstract要約: 変分量子アルゴリズム(VQA)のようなハイブリッド量子古典アルゴリズムは、NISQコンピュータ上での実装に適している。
このレターでは、VQAの暗黙的なステップを拡張します。古典的なプリ計算サブルーチンは、古典的なアルゴリズムを非自明に使用して、問題インスタンス固有の変動量子回路を単純化、変換、特定することができます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hybrid quantum-classical algorithms, such as variational quantum algorithms
(VQA), are suitable for implementation on NISQ computers. In this Letter we
expand an implicit step of VQAs: the classical pre-computation subroutine which
can non-trivially use classical algorithms to simplify, transform, or specify
problem instance-specific variational quantum circuits. In VQA there is a
trade-off between quality of solution and difficulty of circuit construction
and optimization. In one extreme, we find VQA for MAXCUT which are exact, but
circuit design or variational optimization is NP-HARD. At the other extreme are
low depth VQA, such as QAOA, with tractable circuit construction and
optimization but poor approximation ratios. Combining these two we define the
Spanning Tree QAOA (ST-QAOA) to solve MAXCUT, which uses an ansatz whose
structure is derived from an approximate classical solution and achieves the
same performance guarantee as the classical algorithm and hence can outperform
QAOA at low depth. In general, we propose integrating these classical
pre-computation subroutines into VQA to improve heuristic or guaranteed
performance.
- Abstract(参考訳): 変分量子アルゴリズム(VQA)のようなハイブリッド量子古典アルゴリズムは、NISQコンピュータ上での実装に適している。
このレターでは、vqaの暗黙のステップを拡張する: 古典的なプリコンピューティングサブルーチンは、問題インスタンス固有の変分量子回路を単純化、変換、指定するために、古典的なアルゴリズムを非自明に使用できる。
VQAでは、解の質と回路構築と最適化の難しさの間にトレードオフがある。
極端に言えば、MAXCUTのVQAは正確であるが、回路設計や変分最適化はNP-HARDである。
他方の極端にはQAOAのような低深さのVQAがあり、回路の構成と最適化は可能であるが近似比は低い。
この2つを組み合わせることで、スパンディングツリーqaoa (st-qaoa) を定義し、maxcut を解く。これは、構造が近似古典解から導出され、古典アルゴリズムと同じ性能保証を達成し、したがって低深さでqaoaを上回ることができる ansatz を用いる。
一般に、これらの古典的なプリ計算サブルーチンをVQAに統合し、ヒューリスティックまたは保証性能を改善することを提案する。
関連論文リスト
- Warm-Starting the VQE with Approximate Complex Amplitude Encoding [0.26217304977339473]
変分量子固有解法(VQE)は、量子力学系の基底状態を決定する量子アルゴリズムである。
本稿では,VQEの初期パラメータ値を近似を用いて生成するウォームスタート手法を提案する。
このようなウォームスタートは、古典近似アルゴリズムと量子アルゴリズムの実りある組み合わせへの道を開く。
論文 参考訳(メタデータ) (2024-02-27T10:15:25Z) - Benchmarking Adaptative Variational Quantum Algorithms on QUBO Instances [0.0]
適応型VQAは、トレーニング中にパラメータの追加、削除、最適化によって回路構造を動的に修正する。
可変量子固有解器(EVQE)、可変アンサッツ(VAns)、ランダム適応-VQE(RA-VQE)の3つの適応的VQAを分析し、ベースラインとして導入するランダムなアプローチを提案する。
我々の分析は、短期量子デバイス用に設計されたAdaptative VQAのベンチマークを設定する。
論文 参考訳(メタデータ) (2023-08-03T14:39:02Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - Iteration Complexity of Variational Quantum Algorithms [5.203200173190989]
雑音は量子回路のバイアスによる目的関数の評価を行う。
我々は、欠落した保証を導き、収束率が影響を受けないことを見出す。
論文 参考訳(メタデータ) (2022-09-21T19:18:41Z) - Alternating Layered Variational Quantum Circuits Can Be Classically
Optimized Efficiently Using Classical Shadows [4.680722019621822]
変分量子アルゴリズム(VQA)は、古典的ニューラルネットワーク(NN)の量子アナログである。
本稿では,VQAのトレーニングコストを指数的に削減したトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-24T15:47:44Z) - On quantum factoring using noisy intermediate scale quantum computers [0.0]
最適化のためのQAOAではなく,VQEを用いた場合の基底状態の発見の可能性を示す。
勾配に基づく最適化では、量子回路勾配推定に要する時間が重要な問題であることがわかった。
論文 参考訳(メタデータ) (2022-08-15T09:32:07Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
提案されたハイブリッドアルゴリズムは、コスト関数をハミルトニアン問題にエンコードし、回路の複雑さの低い一連の状態によってエネルギーを最適化する。
レベル$p=2,ldots, 6$の場合、予想される近似比をほぼ維持しながら、レベル$p$を1に減らすことができる。
論文 参考訳(メタデータ) (2022-03-01T19:47:16Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
論文 参考訳(メタデータ) (2021-07-11T10:56:24Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
変分量子アルゴリズム(VQA)は、特定の計算上の利点を得るために、短期量子マシンを利用する可能性がある。
現代のVQAは、巨大なデータを扱うために単独の量子プロセッサを使用するという伝統によって妨げられている、計算上のオーバーヘッドに悩まされている。
ここでは、この問題に対処するため、効率的な分散最適化手法であるQUDIOを考案する。
論文 参考訳(メタデータ) (2021-06-24T08:18:42Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。