Transfer Learning for Node Regression Applied to Spreading Prediction
- URL: http://arxiv.org/abs/2104.00088v1
- Date: Wed, 31 Mar 2021 20:09:09 GMT
- Title: Transfer Learning for Node Regression Applied to Spreading Prediction
- Authors: Sebastian Me\v{z}nar, Nada Lavra\v{c}, Bla\v{z} \v{S}krlj
- Abstract summary: We explore the utility of the state-of-the-art node representation learners when used to assess the effects of spreading from a given node.
As many real-life networks are topologically similar, we systematically investigate whether the learned models generalize to previously unseen networks.
This is one of the first attempts to evaluate the utility of zero-shot transfer for the task of node regression.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding how information propagates in real-life complex networks yields
a better understanding of dynamic processes such as misinformation or epidemic
spreading. The recently introduced branch of machine learning methods for
learning node representations offers many novel applications, one of them being
the task of spreading prediction addressed in this paper. We explore the
utility of the state-of-the-art node representation learners when used to
assess the effects of spreading from a given node, estimated via extensive
simulations. Further, as many real-life networks are topologically similar, we
systematically investigate whether the learned models generalize to previously
unseen networks, showing that in some cases very good model transfer can be
obtained. This work is one of the first to explore transferability of the
learned representations for the task of node regression; we show there exist
pairs of networks with similar structure between which the trained models can
be transferred (zero-shot), and demonstrate their competitive performance. To
our knowledge, this is one of the first attempts to evaluate the utility of
zero-shot transfer for the task of node regression.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Generalization emerges from local optimization in a self-organized learning network [0.0]
We design and analyze a new paradigm for building supervised learning networks, driven only by local optimization rules without relying on a global error function.
Our network stores new knowledge in the nodes accurately and instantaneously, in the form of a lookup table.
We show on numerous examples of classification tasks that the networks generated by our algorithm systematically reach such a state of perfect generalization when the number of learned examples becomes sufficiently large.
We report on the dynamics of the change of state and show that it is abrupt and has the distinctive characteristics of a first order phase transition, a phenomenon already observed for traditional learning networks and known as grokking.
arXiv Detail & Related papers (2024-10-03T15:32:08Z) - Transfer Learning with Reconstruction Loss [12.906500431427716]
This paper proposes a novel approach for model training by adding into the model an additional reconstruction stage associated with a new reconstruction loss.
The proposed approach encourages the learned features to be general and transferable, and therefore can be readily used for efficient transfer learning.
For numerical simulations, three applications are studied: transfer learning on classifying MNIST handwritten digits, the device-to-device wireless network power allocation, and the multiple-input-single-output network downlink beamforming and localization.
arXiv Detail & Related papers (2024-03-31T00:22:36Z) - Understanding Activation Patterns in Artificial Neural Networks by
Exploring Stochastic Processes [0.0]
We propose utilizing the framework of processes, which has been underutilized thus far.
We focus solely on activation frequency, leveraging neuroscience techniques used for real neuron spike trains.
We derive parameters describing activation patterns in each network, revealing consistent differences across architectures and training sets.
arXiv Detail & Related papers (2023-08-01T22:12:30Z) - Transfer Learning via Test-Time Neural Networks Aggregation [11.42582922543676]
It has been demonstrated that deep neural networks outperform traditional machine learning.
Deep networks lack generalisability, that is, they will not perform as good as in a new (testing) set drawn from a different distribution.
arXiv Detail & Related papers (2022-06-27T15:46:05Z) - How Well Do Sparse Imagenet Models Transfer? [75.98123173154605]
Transfer learning is a classic paradigm by which models pretrained on large "upstream" datasets are adapted to yield good results on "downstream" datasets.
In this work, we perform an in-depth investigation of this phenomenon in the context of convolutional neural networks (CNNs) trained on the ImageNet dataset.
We show that sparse models can match or even outperform the transfer performance of dense models, even at high sparsities.
arXiv Detail & Related papers (2021-11-26T11:58:51Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks.
We propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI)
In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks.
arXiv Detail & Related papers (2020-12-31T08:21:37Z) - Unsupervised Transfer Learning for Spatiotemporal Predictive Networks [90.67309545798224]
We study how to transfer knowledge from a zoo of unsupervisedly learned models towards another network.
Our motivation is that models are expected to understand complex dynamics from different sources.
Our approach yields significant improvements on three benchmarks fortemporal prediction, and benefits the target even from less relevant ones.
arXiv Detail & Related papers (2020-09-24T15:40:55Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
Transfer learning is a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains.
In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models.
arXiv Detail & Related papers (2020-07-11T22:48:42Z) - Inter- and Intra-domain Knowledge Transfer for Related Tasks in Deep
Character Recognition [2.320417845168326]
Pre-training a deep neural network on the ImageNet dataset is a common practice for training deep learning models.
The technique of pre-training on one task and then retraining on a new one is called transfer learning.
In this paper we analyse the effectiveness of using deep transfer learning for character recognition tasks.
arXiv Detail & Related papers (2020-01-02T14:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.