論文の概要: Distributed Bayesian Online Learning for Cooperative Manipulation
- arxiv url: http://arxiv.org/abs/2104.04342v1
- Date: Fri, 9 Apr 2021 13:03:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-12 13:53:15.951199
- Title: Distributed Bayesian Online Learning for Cooperative Manipulation
- Title(参考訳): 協調操作のための分散ベイズオンライン学習
- Authors: Pablo Budde gen. Dohmann, Armin Lederer, Marcel Di{\ss}emond, Sandra
Hirche
- Abstract要約: ベイズ原理を用いた協調操作の模範的タスクのための新しい分散学習フレームワークを提案する。
各エージェントは、局所状態情報のみを使用して、オブジェクトダイナミクスの推定を取得し、キネマティクスを把握する。
対象のダイナミクスと把持キネマティックスの各々の推定には不確実性の尺度が伴うため、高い確率で有界な予測誤差を保証できる。
- 参考スコア(独自算出の注目度): 9.582645137247667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For tasks where the dynamics of multiple agents are physically coupled, e.g.,
in cooperative manipulation, the coordination between the individual agents
becomes crucial, which requires exact knowledge of the interaction dynamics.
This problem is typically addressed using centralized estimators, which can
negatively impact the flexibility and robustness of the overall system. To
overcome this shortcoming, we propose a novel distributed learning framework
for the exemplary task of cooperative manipulation using Bayesian principles.
Using only local state information each agent obtains an estimate of the object
dynamics and grasp kinematics. These local estimates are combined using dynamic
average consensus. Due to the strong probabilistic foundation of the method,
each estimate of the object dynamics and grasp kinematics is accompanied by a
measure of uncertainty, which allows to guarantee a bounded prediction error
with high probability. Moreover, the Bayesian principles directly allow
iterative learning with constant complexity, such that the proposed learning
method can be used online in real-time applications. The effectiveness of the
approach is demonstrated in a simulated cooperative manipulation task.
- Abstract(参考訳): 複数のエージェントが物理的に結合しているタスク、例えば協調操作では、個々のエージェント間の協調が重要となり、相互作用のダイナミクスの正確な知識が必要になる。
この問題は一般に、システム全体の柔軟性と堅牢性に悪影響を及ぼす集中型推定器を用いて対処される。
この欠点を克服するために,ベイズ原理を用いた協調操作の模範的タスクのための分散学習フレームワークを提案する。
局所状態情報のみを使用して、各エージェントはオブジェクトのダイナミクスの見積もりを取得し、キネマティックスを把握します。
これらの局所的な推定は動的平均コンセンサスを用いて合成される。
この手法の強い確率的基礎のため、対象のダイナミクスと把握キネマティクスの各々の推定には不確実性の尺度が伴うので、高い確率で有界な予測誤差を保証できる。
さらに、ベイズ原理は、定常的な複雑性を持つ反復学習を直接可能とし、提案する学習方法は、リアルタイムアプリケーションでオンラインで使用できる。
本手法の有効性は, 模擬協調操作作業において実証される。
関連論文リスト
- LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
本稿では,自己注意ネットワークのためのパラメータ効率の高いディープアンサンブル手法であるLoRA-Ensembleを紹介する。
全メンバー間で重みを共有できる1つの事前学習型自己注意ネットワークを利用することで、注意投影のために、メンバー固有の低ランク行列を訓練する。
提案手法は明示的なアンサンブルよりも優れたキャリブレーションを示し,様々な予測タスクやデータセットに対して類似あるいは良好な精度を実現する。
論文 参考訳(メタデータ) (2024-05-23T11:10:32Z) - Pessimistic Causal Reinforcement Learning with Mediators for Confounded Offline Data [17.991833729722288]
我々は新しいポリシー学習アルゴリズム PESsimistic CAusal Learning (PESCAL) を提案する。
我々のキーとなる観察は、システム力学における作用の効果を媒介する補助変数を組み込むことで、Q-関数の代わりに媒介物分布関数の下位境界を学習することは十分であるということである。
提案するアルゴリズムの理論的保証とシミュレーションによる有効性の実証、および主要な配車プラットフォームからのオフラインデータセットを利用した実世界の実験を提供する。
論文 参考訳(メタデータ) (2024-03-18T14:51:19Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
分散型および生涯適応型多エージェント協調学習は、中央サーバを使わずに複数のエージェント間のコラボレーションを強化することを目的としている。
動的協調グラフを用いた分散マルチエージェント生涯協調学習アルゴリズムであるDeLAMAを提案する。
論文 参考訳(メタデータ) (2024-03-11T09:21:11Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
我々は、動的システムの定性理論から知られているトラップ領域の概念を適用し、分散学習のための共同戦略空間に安全セットを作成する。
本稿では,既知の学習力学を持つシステムにおいて,候補がトラップ領域を形成することを検証するための二分分割アルゴリズムと,学習力学が未知のシナリオに対するサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-27T14:47:52Z) - Deep Unfolding-based Weighted Averaging for Federated Learning in
Heterogeneous Environments [11.023081396326507]
フェデレートラーニング(Federated Learning)は、複数のクライアントによるモデル更新と、中央サーバによるアップデートの集約を反復する、協調的なモデルトレーニング手法である。
そこで本研究では, パラメータ調整法として, 深部展開法(deep unfolding)を用いる。
提案手法は,実世界の現実的なタスクを遂行できるような事前学習モデルを用いて,大規模学習モデルを扱うことができる。
論文 参考訳(メタデータ) (2022-12-23T08:20:37Z) - Verified Probabilistic Policies for Deep Reinforcement Learning [6.85316573653194]
我々は、深い強化学習のための確率的政策を検証する問題に取り組む。
本稿では,マルコフ決定プロセスの間隔に基づく抽象的アプローチを提案する。
本稿では,抽象的解釈,混合整数線形プログラミング,エントロピーに基づく洗練,確率的モデルチェックを用いて,これらのモデルを構築・解決する手法を提案する。
論文 参考訳(メタデータ) (2022-01-10T23:55:04Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Robust Unsupervised Learning of Temporal Dynamic Interactions [21.928675010305543]
本稿では,対話の堅牢な表現学習のためのProcrustes距離に基づくモデルフリーメトリックを提案する。
また、相互作用プリミティブの分布を比較するために、最適な輸送ベース距離メートル法も導入する。
安全パイロットデータベースから抽出した車車間相互作用の教師なし学習において,その有用性を示す。
論文 参考訳(メタデータ) (2020-06-18T02:39:45Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z) - Contextual Policy Transfer in Reinforcement Learning Domains via Deep
Mixtures-of-Experts [24.489002406693128]
そこで本稿では,タスクのダイナミクスに関する状態依存的信念を学習するための,新しいミックス・オブ・エキスパートの定式化について紹介する。
我々は、このモデルを標準ポリシー再利用フレームワークに組み込む方法を示す。
論文 参考訳(メタデータ) (2020-02-29T07:58:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。