論文の概要: Mixtures of Gaussian Processes for regression under multiple prior
distributions
- arxiv url: http://arxiv.org/abs/2104.09185v1
- Date: Mon, 19 Apr 2021 10:19:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-20 22:29:42.423452
- Title: Mixtures of Gaussian Processes for regression under multiple prior
distributions
- Title(参考訳): 複数の先行分布下での回帰に対するガウス過程の混合
- Authors: Sarem Seitz
- Abstract要約: ガウス過程回帰のための混合モデルの概念を拡張し、複数の先行する信念を同時に扱う。
本手法は,関数回帰問題における先行的誤特定の問題を考慮に入れたものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When constructing a Bayesian Machine Learning model, we might be faced with
multiple different prior distributions and thus are required to properly
consider them in a sensible manner in our model. While this situation is
reasonably well explored for classical Bayesian Statistics, it appears useful
to develop a corresponding method for complex Machine Learning problems. Given
their underlying Bayesian framework and their widespread popularity, Gaussian
Processes are a good candidate to tackle this task. We therefore extend the
idea of Mixture models for Gaussian Process regression in order to work with
multiple prior beliefs at once - both a analytical regression formula and a
Sparse Variational approach are considered. In addition, we consider the usage
of our approach to additionally account for the problem of prior
misspecification in functional regression problems.
- Abstract(参考訳): ベイズ型機械学習モデルを構築する場合、複数の異なる事前分布に直面する可能性があるため、モデル内で適切な方法でそれらを適切に検討する必要がある。
この状況は古典ベイズ統計学においてかなりよく研究されているが、複雑な機械学習問題に対応する方法を開発するのに有用である。
基礎となるベイズ的枠組みとその普及を考えると、ガウス的プロセスはこの課題に取り組むのによい候補である。
したがって、ガウス過程回帰に対する混合モデルの概念を拡張して、複数の先行信念を同時に扱えるようにし、解析的回帰公式とスパース変分法の両方を考慮する。
さらに,機能回帰問題における事前の誤特定問題についても,本手法を用いた検討を行った。
関連論文リスト
- von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Locking and Quacking: Stacking Bayesian model predictions by log-pooling
and superposition [0.5735035463793007]
異なるモデルから予測を合成するための2つの新しいツールを提案する。
これらはモデル積み重ねの一般化であるが、対数線形プールと量子重ね合わせによって後続密度を結合する。
モデル重みを正規化の負担を回避しつつ最適化するため, 混合後予測のハイバリネンスコアについて検討した。
論文 参考訳(メタデータ) (2023-05-12T09:26:26Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
キャリブレーションされたモデルを設計するための最先端のアプローチは、ガウス過程の後方分散を膨らませることに依存している。
本稿では,バニラガウス過程の後方分散にインスパイアされた計算を用いて,予測量子化を生成するキャリブレーション手法を提案する。
我々のアプローチは合理的な仮定の下で校正されたモデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:17:36Z) - Introduction To Gaussian Process Regression In Bayesian Inverse
Problems, With New ResultsOn Experimental Design For Weighted Error Measures [0.0]
この研究は、特に逆問題に対する代理モデルを構築する文脈において、ガウス過程回帰の導入として機能する。
本研究は, 正の後方分布と近似の後方分布との誤差が, 正の後方分布の重み付けした$L2$-normで測定された真と近似の近さの誤差によって有界となることを示す。
論文 参考訳(メタデータ) (2023-02-09T09:25:39Z) - Learning non-stationary and discontinuous functions using clustering,
classification and Gaussian process modelling [0.0]
非滑らかな関数の近似に対する3段階のアプローチを提案する。
この考え方は、システムの局所的な振る舞いや体制に従って空間を分割し、局所的なサロゲートを構築することである。
本手法は, 引張膜構造の2つの解析関数と有限要素モデルを用いて検証し, 検証した。
論文 参考訳(メタデータ) (2022-11-30T11:11:56Z) - RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction
for High-dimensional Uncertainty Quantification [12.826754199680474]
マルチフィデリティモデリングは、少量の正確なデータしか入手できない場合でも、正確な推測を可能にする。
高忠実度モデルと1つ以上の低忠実度モデルを組み合わせることで、多忠実度法は興味のある量の正確な予測を行うことができる。
本稿では,回転多要素ガウス過程の回帰に基づく新しい次元削減フレームワークとベイズ能動学習手法を提案する。
論文 参考訳(メタデータ) (2022-04-11T01:20:35Z) - Machine Learning for Multi-Output Regression: When should a holistic
multivariate approach be preferred over separate univariate ones? [62.997667081978825]
ランダムフォレストのような木に基づくアンサンブルは、統計学の手法の中で近代的な古典である。
これらの手法を広範囲なシミュレーションで比較し,多変量アンサンブル技術を用いた場合の主問題に答える。
論文 参考訳(メタデータ) (2022-01-14T08:44:25Z) - Robust priors for regularized regression [12.945710636153537]
尾根回帰のような罰則化された回帰アプローチは0に向かって縮小するが、0重みは通常は意味のある先行ではない。
人間が使用する単純で堅牢な決定にインスパイアされた私たちは、ペナル化された回帰モデルのための非ゼロの事前計算を構築しました。
頑丈な先行モデルでは、最悪のパフォーマンスに優れていた。
論文 参考訳(メタデータ) (2020-10-06T10:43:14Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
乗算重み更新法に基づいて,Klivans と Meka のアルゴリズムを適用した。
アルゴリズムは、文献の他のものと質的に類似したサンプル複雑性境界を楽しみます。
ランタイムが低い$O(mp2)$で、$m$サンプルと$p$ノードの場合には、簡単にオンライン形式で実装できる。
論文 参考訳(メタデータ) (2020-02-20T10:50:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。