論文の概要: Network-wide traffic signal control optimization using a multi-agent
deep reinforcement learning
- arxiv url: http://arxiv.org/abs/2104.09936v1
- Date: Tue, 20 Apr 2021 12:53:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-21 19:20:17.319133
- Title: Network-wide traffic signal control optimization using a multi-agent
deep reinforcement learning
- Title(参考訳): マルチエージェント深部強化学習を用いたネットワークワイド信号制御最適化
- Authors: Zhenning Li, Hao Yu, Guohui Zhang, Shangjia Dong, Cheng-Zhong Xu
- Abstract要約: 非効率な交通制御は、交通渋滞やエネルギー廃棄物などの多くの問題を引き起こす可能性がある。
本論文では,交通信号間の協調性を高めることで最適制御を実現するマルチエージェント強化学習手法であるKS-DDPGを提案する。
- 参考スコア(独自算出の注目度): 20.385286762476436
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inefficient traffic control may cause numerous problems such as traffic
congestion and energy waste. This paper proposes a novel multi-agent
reinforcement learning method, named KS-DDPG (Knowledge Sharing Deep
Deterministic Policy Gradient) to achieve optimal control by enhancing the
cooperation between traffic signals. By introducing the knowledge-sharing
enabled communication protocol, each agent can access to the collective
representation of the traffic environment collected by all agents. The proposed
method is evaluated through two experiments respectively using synthetic and
real-world datasets. The comparison with state-of-the-art reinforcement
learning-based and conventional transportation methods demonstrate the proposed
KS-DDPG has significant efficiency in controlling large-scale transportation
networks and coping with fluctuations in traffic flow. In addition, the
introduced communication mechanism has also been proven to speed up the
convergence of the model without significantly increasing the computational
burden.
- Abstract(参考訳): 非効率な交通制御は、交通渋滞やエネルギー廃棄物などの多くの問題を引き起こす可能性がある。
本稿では,交通信号の協調性を高めて最適制御を実現するために,KS-DDPG (Knowledge Sharing Deep Deterministic Policy Gradient) という新しいマルチエージェント強化学習手法を提案する。
知識共有可能な通信プロトコルを導入することで、各エージェントは、すべてのエージェントが収集したトラフィック環境の集団表現にアクセスできる。
提案手法は合成データと実世界データを用いて2つの実験により評価した。
最先端の強化学習法と従来の輸送手法との比較により,提案手法であるks-ddpgは,大規模交通網の制御や交通流の変動への対応において有意な効率性を示している。
さらに、導入された通信機構は計算負荷を大幅に増加させることなくモデルの収束をスピードアップすることが証明されている。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Joint Optimization of Traffic Signal Control and Vehicle Routing in
Signalized Road Networks using Multi-Agent Deep Reinforcement Learning [19.024527400852968]
信号化道路網における交通信号制御と車両ルーティングの協調最適化手法を提案する。
マルチエージェントディープ強化学習(MADRL)を用いた信号タイミングと経路選択を同時に制御することでネットワーク性能を向上させることを目的とする。
本研究は,MADRLを用いて信号制御と車両経路の最適結合ポリシーを導出する最初の試みである。
論文 参考訳(メタデータ) (2023-10-16T22:10:47Z) - Cooperative Multi-Objective Reinforcement Learning for Traffic Signal
Control and Carbon Emission Reduction [3.3454373538792552]
本稿では,多目的多元的深層決定主義政策グラディエントという協調型多目的アーキテクチャを提案する。
MOMA-DDPGは、年齢遅延重みを用いた信号制御最適化のための複数の報酬項を推定する。
以上の結果から,MOMA-DDPGの有効性が示された。
論文 参考訳(メタデータ) (2023-06-16T07:37:05Z) - Real-Time Network-Level Traffic Signal Control: An Explicit Multiagent
Coordination Method [9.761657423863706]
交通信号の効率的な制御 (TSC) は, 都市交通渋滞の低減に最も有用な方法の1つである。
強化学習(RL)手法を適用した最近の取り組みは、トラフィック状態を信号決定にリアルタイムでマッピングすることでポリシーをクエリすることができる。
本稿では,適応的,リアルタイム,ネットワークレベルのTSCを満足する,EMCに基づくオンライン計画手法を提案する。
論文 参考訳(メタデータ) (2023-06-15T04:08:09Z) - A Novel Multi-Agent Deep RL Approach for Traffic Signal Control [13.927155702352131]
都市ネットワークにおける複数の交通信号制御のための Friend-Deep Q-network (Friend-DQN) アプローチを提案する。
特に、複数のエージェント間の協調は状態-作用空間を減少させ、収束を加速させる。
論文 参考訳(メタデータ) (2023-06-05T08:20:37Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
非効率な信号制御手法は、交通渋滞やエネルギー浪費などの多くの問題を引き起こす可能性がある。
本稿では,アクター・クリティカル・ポリシー・グラデーション・アルゴリズムを拡張し,マルチエージェント・ディープ・決定性ポリシー・グラデーション(MADDPG)法を提案する。
論文 参考訳(メタデータ) (2021-07-13T14:11:04Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Federated Learning on the Road: Autonomous Controller Design for
Connected and Autonomous Vehicles [109.71532364079711]
CAV(コネクテッド・アンド・自律車両)の自律制御設計のための新しい統合学習(FL)フレームワークの提案
CAVの移動性、無線フェーディングチャネル、および不均衡で非独立で同一に分散されたデータを考慮に入れた新しい動的フェデレーション・プロキシ(DFP)アルゴリズムが提案されている。
最適制御器を用いてCAVがどの程度の速度で収束するかを同定するために,提案アルゴリズムに対して厳密な収束解析を行う。
論文 参考訳(メタデータ) (2021-02-05T19:57:47Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。