論文の概要: Towards Exploratory Landscape Analysis for Large-scale Optimization: A
Dimensionality Reduction Framework
- arxiv url: http://arxiv.org/abs/2104.10301v1
- Date: Wed, 21 Apr 2021 01:16:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-03 00:36:27.571469
- Title: Towards Exploratory Landscape Analysis for Large-scale Optimization: A
Dimensionality Reduction Framework
- Title(参考訳): 大規模最適化のための探索的景観解析に向けて:次元化フレームワーク
- Authors: Ryoji Tanabe
- Abstract要約: 本稿では,従来の解空間よりも低次元空間における特徴を計算できる次元削減フレームワークを提案する。
提案手法は, 大規模化において, ela_level と ela_meta の計算時間を劇的に削減できることを示す。
また,提案手法によって計算された特徴は,24個の大規模BBOB関数の高次特性を予測する上で有益であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although exploratory landscape analysis (ELA) has shown its effectiveness in
various applications, most previous studies focused only on low- and
moderate-dimensional problems. Thus, little is known about the scalability of
the ELA approach for large-scale optimization. In this context, first, this
paper analyzes the computational cost of features in the flacco package. Our
results reveal that two important feature classes (ela_level and ela_meta)
cannot be applied to large-scale optimization due to their high computational
cost. To improve the scalability of the ELA approach, this paper proposes a
dimensionality reduction framework that computes features in a reduced
lower-dimensional space than the original solution space. We demonstrate that
the proposed framework can drastically reduce the computation time of ela_level
and ela_meta for large dimensions. In addition, the proposed framework can make
the cell-mapping feature classes scalable for large-scale optimization. Our
results also show that features computed by the proposed framework are
beneficial for predicting the high-level properties of the 24 large-scale BBOB
functions.
- Abstract(参考訳): 探索ランドスケープ解析(ELA)は様々な用途で有効性を示したが、これまでの研究は低次元と中次元の問題にのみ焦点をあてたものだった。
このように、大規模最適化のためのelaアプローチのスケーラビリティについてはほとんど知られていない。
本稿では,まず,フラッコパッケージの特徴の計算コストを解析する。
その結果、計算コストが高いため、2つの重要な特徴クラス(ela_levelとela_meta)が大規模最適化には適用できないことがわかった。
ELA手法のスケーラビリティを向上させるため,本論文では,原解空間よりも低次元空間における特徴量を計算する次元削減フレームワークを提案する。
提案手法は, 大規模化において, ela_level と ela_meta の計算時間を劇的に削減できることを示す。
さらに,提案フレームワークは,セルマッピング機能クラスを大規模最適化のためにスケーラブルにすることができる。
また,提案手法によって計算された特徴は,24個の大規模BBOB関数の高次特性を予測する上で有益であることを示す。
関連論文リスト
- Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes [8.40647440727154]
我々は,より効率的な表現力を検索空間の関連領域に割り当てることのできる,疎いGPを用いたベイズ最適化アルゴリズムについて論じる。
本研究では,FocalBOが大量のオフラインおよびオンラインデータを効率よく活用し,ロボット形態学設計における最先端性能と585次元筋骨格系を制御できることを示す。
論文 参考訳(メタデータ) (2024-12-29T06:36:15Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
微分プライベート(DP)最適化問題を個人勾配の空間性の下で検討する。
これに基づいて、スパース勾配の凸最適化にほぼ最適な速度で純粋および近似DPアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-04-16T20:01:10Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - Prescriptive PCA: Dimensionality Reduction for Two-stage Stochastic
Optimization [1.1612308609123565]
最適化フェーズにおける準最適度を最小化することを目的とした,規範的次元削減フレームワークを開発した。
下流最適化問題に期待値の目的がある場合、分散ロバスト最適化問題を解くことにより、規範的次元削減が可能であることを示す。
提案手法は, 実データおよび合成データを用いて主成分分析を著しく上回っている。
論文 参考訳(メタデータ) (2023-06-04T00:50:35Z) - Scalable Bayesian optimization with high-dimensional outputs using
randomized prior networks [3.0468934705223774]
本稿では,確率化された先行するニューラルネットワークの自己ストラップ型アンサンブルに基づくBOとシーケンシャル意思決定のためのディープラーニングフレームワークを提案する。
提案手法は,高次元ベクトル空間や無限次元関数空間の値を取る場合においても,設計変数と関心量の関数的関係を近似することができることを示す。
提案手法をBOの最先端手法に対して検証し,高次元出力の課題に対して優れた性能を示す。
論文 参考訳(メタデータ) (2023-02-14T18:55:21Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - On Solution Functions of Optimization: Universal Approximation and
Covering Number Bounds [6.3291148076593355]
線形目標性(1)(LP)と近似可能なQP近似パワーの凸最適化関数解関数の表現可能性について検討する。
この結果から,制約付きプログラミングの特性の厳密な解析と,アルゴリズム設計や性能保証への示唆が得られた。
論文 参考訳(メタデータ) (2022-12-02T17:16:04Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
1次モーメントに対する大きな運動量パラメータの増大は適応的スケーリングに十分であることを示す。
また,段階的に減少するステップサイズに応じて,段階的に運動量を増加させるための洞察を与える。
論文 参考訳(メタデータ) (2021-04-30T08:50:24Z) - Escaping Poor Local Minima in Large Scale Robust Estimation [41.304283715031204]
ロバストなパラメータ推定のための2つの新しいアプローチを紹介します。
最初のアルゴリズムは、貧弱なミニマから逃れる強力な能力を持つ適応的なカーネルスケーリング戦略を使用します。
第2のアルゴリズムは、一般化メジャー化最小化フレームワークと半二次昇降式を組み合わせて、シンプルで効率的なソルバーを得る。
論文 参考訳(メタデータ) (2021-02-22T11:58:29Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。