論文の概要: Prescriptive PCA: Dimensionality Reduction for Two-stage Stochastic
Optimization
- arxiv url: http://arxiv.org/abs/2306.02223v1
- Date: Sun, 4 Jun 2023 00:50:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-06 19:14:21.217899
- Title: Prescriptive PCA: Dimensionality Reduction for Two-stage Stochastic
Optimization
- Title(参考訳): 定型PCA:2段階確率最適化のための次元化
- Authors: Long He, Ho-Yin Mak
- Abstract要約: 最適化フェーズにおける準最適度を最小化することを目的とした,規範的次元削減フレームワークを開発した。
下流最適化問題に期待値の目的がある場合、分散ロバスト最適化問題を解くことにより、規範的次元削減が可能であることを示す。
提案手法は, 実データおよび合成データを用いて主成分分析を著しく上回っている。
- 参考スコア(独自算出の注目度): 1.1612308609123565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we consider the alignment between an upstream dimensionality
reduction task of learning a low-dimensional representation of a set of
high-dimensional data and a downstream optimization task of solving a
stochastic program parameterized by said representation. In this case, standard
dimensionality reduction methods (e.g., principal component analysis) may not
perform well, as they aim to maximize the amount of information retained in the
representation and do not generally reflect the importance of such information
in the downstream optimization problem. To address this problem, we develop a
prescriptive dimensionality reduction framework that aims to minimize the
degree of suboptimality in the optimization phase. For the case where the
downstream stochastic optimization problem has an expected value objective, we
show that prescriptive dimensionality reduction can be performed via solving a
distributionally-robust optimization problem, which admits a semidefinite
programming relaxation. Computational experiments based on a warehouse
transshipment problem and a vehicle repositioning problem show that our
approach significantly outperforms principal component analysis with real and
synthetic data sets.
- Abstract(参考訳): 本稿では,高次元データの低次元表現を学習する上流次元縮小タスクと,その表現によってパラメータ化された確率的プログラムを解く下流最適化タスクとの整合性を検討する。
この場合、標準次元減少法(例えば主成分分析)は、表現に保持される情報の量を最大化することを目的としており、下流最適化問題におけるそのような情報の重要性を一般的に反映していない。
この問題に対処するため,最適化フェーズにおける準最適度を最小化する規範的次元削減フレームワークを開発した。
下流確率最適化問題に期待値の目的がある場合、半定値のプログラム緩和を許容する分散ロバスト最適化問題を解くことにより、規範的次元削減を行うことができることを示す。
倉庫輸送問題と車両再配置問題に基づく計算実験により,本手法は実データおよび合成データを用いて主成分分析を著しく上回ることを示した。
関連論文リスト
- Dimension reduction via score ratio matching [0.9012198585960441]
スコアマッチングから派生したフレームワークを提案し、勾配を利用できない問題に勾配に基づく次元の減少を拡大する。
提案手法は,低次元構造を有する問題に対して,標準的なスコアマッチングよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-25T22:21:03Z) - On Probabilistic Embeddings in Optimal Dimension Reduction [1.2085509610251701]
次元減少アルゴリズムは多くのデータサイエンスパイプラインの重要な部分である。
広く利用されているにもかかわらず、多くの非線形次元還元アルゴリズムは理論的観点からは理解されていない。
論文 参考訳(メタデータ) (2024-08-05T12:46:21Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
微分プライベート(DP)最適化問題を個人勾配の空間性の下で検討する。
これに基づいて、スパース勾配の凸最適化にほぼ最適な速度で純粋および近似DPアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-04-16T20:01:10Z) - Information Theoretical Importance Sampling Clustering [18.248246885248733]
多くのクラスタリング手法の現在の仮定は、トレーニングデータと将来のデータが同じ分布から取られるというものである。
我々は,クラスタリング問題(itisC)に対する情報理論的重要度サンプリングに基づくアプローチを提案する。
合成データセットの実験結果と実世界の負荷予測問題により,提案モデルの有効性が検証された。
論文 参考訳(メタデータ) (2023-02-09T03:18:53Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
1次モーメントに対する大きな運動量パラメータの増大は適応的スケーリングに十分であることを示す。
また,段階的に減少するステップサイズに応じて,段階的に運動量を増加させるための洞察を与える。
論文 参考訳(メタデータ) (2021-04-30T08:50:24Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Objective-Sensitive Principal Component Analysis for High-Dimensional
Inverse Problems [0.0]
本稿では,大規模乱数場の適応的,微分可能なパラメータ化手法を提案する。
開発した手法は主成分分析(PCA)に基づくが,目的関数の振る舞いを考慮した主成分の純粋にデータ駆動に基づく基礎を変更する。
最適パラメータ分解のための3つのアルゴリズムを2次元合成履歴マッチングの目的に適用した。
論文 参考訳(メタデータ) (2020-06-02T18:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。