Non-reciprocity and quantum correlations of light transport in hot atoms
via reservoir engineering
- URL: http://arxiv.org/abs/2104.11921v2
- Date: Mon, 17 May 2021 03:07:52 GMT
- Title: Non-reciprocity and quantum correlations of light transport in hot atoms
via reservoir engineering
- Authors: Xingda Lu, Wanxia Cao, Wei Yi, Heng Shen, and Yanhong Xiao
- Abstract summary: We demonstrate non-reciprocal light transport in a quantum system of hot atoms by engineering the dissipative atomic reservoir.
We observe inter-channel quantum correlations which originate from interactions with the judiciously engineered reservoir.
The non-reciprocal transport in a quantum optical atomic system constitutes a new paradigm for atom-based, non-reciprocal optics.
- Score: 0.37515646463759694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The breaking of reciprocity is a topic of great interest in fundamental
physics and optical information processing applications. We demonstrate
non-reciprocal light transport in a quantum system of hot atoms by engineering
the dissipative atomic reservoir. Our scheme is based on the phase-sensitive
light transport in a multi-channel photon-atom interaction configuration, where
the phase of collective atomic excitations is tunable through external driving
fields. Remarkably, we observe inter-channel quantum correlations which
originate from interactions with the judiciously engineered reservoir. The
non-reciprocal transport in a quantum optical atomic system constitutes a new
paradigm for atom-based, non-reciprocal optics, and offers opportunities for
quantum simulations with coupled optical channels.
Related papers
- Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Coherent super- and subradiant dynamics between distant optical quantum
emitters [5.240984067778683]
Single emitter radiation can be tailored by the photonic environment.
Multiple emitters fundamentally extends this picture following a "more is different" dictum.
Subradiant states are particularly challenging to realize being highly sensitive to imperfections and decoherence.
arXiv Detail & Related papers (2022-10-05T17:59:06Z) - Ultrastrong light-matter interaction in a multimode photonic crystal [0.1588748438612071]
We show that the transport of a single photon becomes a many-body problem, owing to the strong participation of multi-photon bound states.
This work opens exciting prospects for exploring nonlinear quantum optics at the single-photon level.
arXiv Detail & Related papers (2022-09-29T17:43:25Z) - Few-photon transport via a multimode nonlinear cavity: theory and
applications [0.0]
We study few-photon transport via a waveguide-coupled multimode optical cavity with second-order bulk nonlinearity.
Our results might lead to significant applications of quantum photonic circuits in all-optical quantum information processing and quantum network protocols.
arXiv Detail & Related papers (2022-09-08T15:28:05Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Cooperative quantum phenomena in light-matter platforms [0.34376560669160383]
cooperativity is evident in light-matter platforms where quantum emitter ensembles are interfaced with confined optical modes.
This tutorial provides a set of theoretical tools to tackle the behavior responsible for the onset of cooperativity.
arXiv Detail & Related papers (2021-07-06T15:27:23Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Design of Light-Matter Interactions for Quantum Technologies [0.0]
We design radiation patterns capable of creating effective light-matter interactions suited to applications in quantum computing, quantum simulation and quantum sensing.
On the one hand, we have used dynamical decoupling techniques to design quantum operations that are robust against errors in environmental and control fields.
On the other hand, we have studied generalised models of light-matter interaction, leading to the discovery of selective multi-photon interactions in the Rabi-Stark model.
arXiv Detail & Related papers (2021-01-27T21:30:36Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z) - Quantum interactions with pulses of radiation [77.34726150561087]
This article presents a general master equation formalism for the interaction between travelling pulses of quantum radiation and localized quantum systems.
We develop a complete input-output theory to describe the driving of quantum systems by arbitrary incident pulses of radiation and the quantum state of the field emitted into any desired outgoing temporal mode.
arXiv Detail & Related papers (2020-03-10T08:35:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.