論文の概要: Equity and Artificial Intelligence in Education: Will "AIEd" Amplify or
Alleviate Inequities in Education?
- arxiv url: http://arxiv.org/abs/2104.12920v1
- Date: Tue, 27 Apr 2021 00:28:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-28 23:57:14.608923
- Title: Equity and Artificial Intelligence in Education: Will "AIEd" Amplify or
Alleviate Inequities in Education?
- Title(参考訳): 教育における平等と人工知能:「AIEd」は教育における不平等を増幅するか、緩和するか?
- Authors: Kenneth Holstein and Shayan Doroudi
- Abstract要約: 我々は,aiedシステムが既存の不等式を増幅するリスクがある場合の4つのレンズについて検討する。
次に、AIEdのより公平な未来への道のりを概説する。
- 参考スコア(独自算出の注目度): 4.644923443649426
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of educational AI (AIEd) systems has often been motivated by
their potential to promote educational equity and reduce achievement gaps
across different groups of learners -- for example, by scaling up the benefits
of one-on-one human tutoring to a broader audience, or by filling gaps in
existing educational services. Given these noble intentions, why might AIEd
systems have inequitable impacts in practice? In this chapter, we discuss four
lenses that can be used to examine how and why AIEd systems risk amplifying
existing inequities. Building from these lenses, we then outline possible paths
towards more equitable futures for AIEd, while highlighting debates surrounding
each proposal. In doing so, we hope to provoke new conversations around the
design of equitable AIEd, and to push ongoing conversations in the field
forward.
- Abstract(参考訳): 教育AI(AIEd)システムの開発は、例えば1対1の人間家庭教師の利益をより広い聴衆に拡大したり、既存の教育サービスのギャップを埋めることによって、教育的平等を促進し、学習者の異なるグループ間の達成ギャップを減らす可能性によって、しばしば動機付けられてきた。
このような高貴な意図を踏まえると、なぜAIEdシステムは実際に何の影響も与えないのか?
本章では,aiedシステムが既存の不等式を増幅するリスクがある場合の4つのレンズについて検討する。
これらのレンズから、我々はAIEdのより公平な未来への道のりを概説し、それぞれの提案を取り巻く議論を強調する。
そうすることで、equitable aiedの設計に関する新たな会話を提起し、現場で進行中の会話を前進させたいと思っています。
関連論文リスト
- Human-Centric eXplainable AI in Education [0.0]
本稿では,教育現場における人間中心型eXplainable AI(HCXAI)について検討する。
学習成果の向上、ユーザ間の信頼の向上、AI駆動ツールの透明性確保における役割を強調している。
ユーザ理解とエンゲージメントを優先するHCXAIシステムの開発のための包括的なフレームワークを概説する。
論文 参考訳(メタデータ) (2024-10-18T14:02:47Z) - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC(Massive AI-empowered Course)は、LLM駆動のマルチエージェントシステムを活用して、AIが強化された教室を構築するオンライン教育の新たな形態である。
中国一の大学である清華大学で予備的な実験を行う。
論文 参考訳(メタデータ) (2024-09-05T13:22:51Z) - From Algorithm Worship to the Art of Human Learning: Insights from 50-year journey of AI in Education [0.0]
人工知能(AI)を取り巻く現在の談話は、希望と理解の間に振動する。
本稿は、AIが教育において果たす役割の複雑さを考察し、教育者と警告された教育者が混ざったメッセージに対処するものである。
倫理的意味に関する懸念を背景に、AIが大規模にパーソナライゼーションを通じて学習を強化するという約束を探求する。
論文 参考訳(メタデータ) (2024-02-05T16:12:14Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
我々は、生成AIと適応学習の交差研究に光を当てた。
我々は、この連合が教育における次の段階の学習形式の発展に大きく貢献するだろうと論じている。
論文 参考訳(メタデータ) (2024-02-02T23:54:51Z) - New Era of Artificial Intelligence in Education: Towards a Sustainable
Multifaceted Revolution [2.94944680995069]
標準化された学術試験におけるChatGPTのハイパフォーマンスは、人工知能(AI)のトピックを、教育の将来に関する主流の議論に押し付けている。
本研究の目的は、応用、利点、課題の3つの主要な軸にまたがる既存の文献のレビューと分析を通じて、AIが教育に与える影響について調査することである。
論文 参考訳(メタデータ) (2023-05-12T08:22:54Z) - Unpacking the "Black Box" of AI in Education [0.0]
われわれは,「AI」とは何か,それが人間の状態を改善する教育機会の進展と妨げに持つ可能性を明らかにすることを目指している。
我々は、AIを支える様々な方法と哲学の基礎的な紹介、最近の進歩について議論、教育への応用を探究し、重要な制限とリスクを強調します。
教育における人間中心のAIの発展を理解し、尋問し、最終的に形作ることができるように、ジャーゴンの言葉や概念をしばしば利用できるようにすることを願っています。
論文 参考訳(メタデータ) (2022-12-31T18:27:21Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
MineRL BASALTコンペティションは、この重要な種類の技術の研究を促進することを目的としている。
Minecraftでは、ハードコードされた報酬関数を書くのが難しいと期待する4つのタスクのスイートを設計しています。
これら4つのタスクのそれぞれについて、人間のデモのデータセットを提供するとともに、模擬学習ベースラインを提供する。
論文 参考訳(メタデータ) (2021-07-05T12:18:17Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Confronting Structural Inequities in AI for Education [5.371816551086117]
我々は、AIモデルの性能格差に基づく公正性を評価するという支配的なパラダイムが、教育用AIシステムが生み出す構造的不平等に直面するには不十分であると主張している。
教育用AI技術が、モデルの性能の同等性に関係なく、構造的不正と不平等の歴史的正当性をいかに束縛され、再現されているかを実証する。
論文 参考訳(メタデータ) (2021-05-18T22:13:35Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。