論文の概要: Deep physical neural networks enabled by a backpropagation algorithm for
arbitrary physical systems
- arxiv url: http://arxiv.org/abs/2104.13386v1
- Date: Tue, 27 Apr 2021 18:00:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-29 23:03:59.092519
- Title: Deep physical neural networks enabled by a backpropagation algorithm for
arbitrary physical systems
- Title(参考訳): 任意の物理系に対するバックプロパゲーションアルゴリズムにより実現される深層物理ニューラルネットワーク
- Authors: Logan G. Wright, Tatsuhiro Onodera, Martin M. Stein, Tianyu Wang,
Darren T. Schachter, Zoey Hu, Peter L. McMahon
- Abstract要約: 本稿では,ディープニューラルネットワークモデルを実現するための急進的な代替手段を提案する。
ニューラルネットとして機能する制御可能な物理システムのシーケンスを効率的に学習するために,物理認識トレーニングと呼ばれるハイブリッド物理デジタルアルゴリズムを導入する。
- 参考スコア(独自算出の注目度): 3.7785805908699803
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have become a pervasive tool in science and engineering.
However, modern deep neural networks' growing energy requirements now
increasingly limit their scaling and broader use. We propose a radical
alternative for implementing deep neural network models: Physical Neural
Networks. We introduce a hybrid physical-digital algorithm called Physics-Aware
Training to efficiently train sequences of controllable physical systems to act
as deep neural networks. This method automatically trains the functionality of
any sequence of real physical systems, directly, using backpropagation, the
same technique used for modern deep neural networks. To illustrate their
generality, we demonstrate physical neural networks with three diverse physical
systems-optical, mechanical, and electrical. Physical neural networks may
facilitate unconventional machine learning hardware that is orders of magnitude
faster and more energy efficient than conventional electronic processors.
- Abstract(参考訳): ディープニューラルネットワークは、科学と工学における普及するツールとなっている。
しかし、現代のディープニューラルネットワークのエネルギー要求の増加は、そのスケーリングと幅広い使用をますます制限している。
本稿では,ディープニューラルネットワークモデルを実現するための急進的な代替手段を提案する。
ニューラルネットとして機能する制御可能な物理システムのシーケンスを効率的に学習するために,物理認識トレーニングと呼ばれるハイブリッド物理デジタルアルゴリズムを導入する。
この方法は、現代のディープニューラルネットワークで使用されるのと同じ手法であるバックプロパゲーションを使用して、任意の物理システムの機能を自動で訓練する。
それらの一般化を説明するために,光学系,機械系,電気系の3種類の物理ニューラルネットワークを実演する。
物理ニューラルネットワークは、従来の電子プロセッサよりも桁違いに高速でエネルギー効率の高い非伝統的な機械学習ハードウェアを促進する。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Design and development of opto-neural processors for simulation of
neural networks trained in image detection for potential implementation in
hybrid robotics [0.0]
リビングニューラルネットワークは、消費電力の低減、処理の高速化、生物学的リアリズムの利点を提供する。
本研究は,オプトジェネティクスによる精密アクティベーションを用いたSTDPベースのアルゴリズムを逆伝播させることにより,間接的に訓練されたシミュレーション型生きたニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2024-01-17T04:42:49Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in
Scientific Computing [0.0]
コンピュータパワーの最近の進歩は、機械学習とディープラーニングを使って科学計算を進歩させることを可能にした。
固有のアーキテクチャのため、従来のニューラルネットワークは、データがスパースである場合には、うまくトレーニングされ、スコープ化できない。
ニューラルネットワークは、物理的駆動あるいは知識に基づく制約を消化するための強力な基盤を提供する。
論文 参考訳(メタデータ) (2022-11-14T15:44:07Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Deep Spiking Convolutional Neural Network for Single Object Localization
Based On Deep Continuous Local Learning [0.0]
グレースケール画像における単一物体の局所化のための深部畳み込みスパイクニューラルネットワークを提案する。
Oxford-IIIT-Petで報告された結果は、教師付き学習アプローチによるスパイクニューラルネットワークの活用を検証する。
論文 参考訳(メタデータ) (2021-05-12T12:02:05Z) - Explainable artificial intelligence for mechanics: physics-informing
neural networks for constitutive models [0.0]
メカニクスにおいて、物理インフォームドニューラルネットワークの新しい活発な分野は、機械的知識に基づいてディープニューラルネットワークを設計することによって、この欠点を緩和しようとする。
本論文では,機械データに訓練されたニューラルネットワークを後述する物理形成型アプローチへの第一歩を提案する。
これにより、主成分分析はRNNの細胞状態における分散表現をデコレーションし、既知の基本関数との比較を可能にする。
論文 参考訳(メタデータ) (2021-04-20T18:38:52Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - A$^3$: Accelerating Attention Mechanisms in Neural Networks with
Approximation [3.5217810503607896]
アルゴリズム近似とハードウェア特殊化によるニューラルネットワークの注意機構を高速化するA3の設計と設計を行う。
提案する加速器は、エネルギー効率(性能/ワット)の大幅な向上と、最先端の従来のハードウェアの大幅な高速化を実現している。
論文 参考訳(メタデータ) (2020-02-22T02:09:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。