Accurate Prediction of Free Solvation Energy of Organic Molecules via
Graph Attention Network and Message Passing Neural Network from Pairwise
Atomistic Interactions
- URL: http://arxiv.org/abs/2105.02048v1
- Date: Thu, 15 Apr 2021 22:15:18 GMT
- Title: Accurate Prediction of Free Solvation Energy of Organic Molecules via
Graph Attention Network and Message Passing Neural Network from Pairwise
Atomistic Interactions
- Authors: Ramin Ansari and Amirata Ghorbani
- Abstract summary: We propose two novel models for the problem of free solvation energy predictions, based on the Graph Neural Network (GNN) architectures.
GNNs are capable of summarizing the predictive information of a molecule as low-dimensional features directly from its graph structure.
We show that our proposed models outperform all quantum mechanical and molecular dynamics methods in addition to existing alternative machine learning based approaches in the task of solvation free energy prediction.
- Score: 14.87390785780636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning based methods have been widely applied to predict various kinds
of molecular properties in the pharmaceutical industry with increasingly more
success. Solvation free energy is an important index in the field of organic
synthesis, medicinal chemistry, drug delivery, and biological processes.
However, accurate solvation free energy determination is a time-consuming
experimental process. Furthermore, it could be useful to assess solvation free
energy in the absence of a physical sample. In this study, we propose two novel
models for the problem of free solvation energy predictions, based on the Graph
Neural Network (GNN) architectures: Message Passing Neural Network (MPNN) and
Graph Attention Network (GAT). GNNs are capable of summarizing the predictive
information of a molecule as low-dimensional features directly from its graph
structure without relying on an extensive amount of intra-molecular
descriptors. As a result, these models are capable of making accurate
predictions of the molecular properties without the time consuming process of
running an experiment on each molecule. We show that our proposed models
outperform all quantum mechanical and molecular dynamics methods in addition to
existing alternative machine learning based approaches in the task of solvation
free energy prediction. We believe such promising predictive models will be
applicable to enhancing the efficiency of the screening of drug molecules and
be a useful tool to promote the development of molecular pharmaceutics.
Related papers
- Contrastive Dual-Interaction Graph Neural Network for Molecular Property Prediction [0.0]
We introduce DIG-Mol, a novel self-supervised graph neural network framework for molecular property prediction.
DIG-Mol integrates a momentum distillation network with two interconnected networks to efficiently improve molecular characterization.
We have established DIG-Mol's state-of-the-art performance through extensive experimental evaluation in a variety of molecular property prediction tasks.
arXiv Detail & Related papers (2024-05-04T10:09:27Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
We propose a well-designed hierarchical informative graph neural networks framework (termed HiGNN) for predicting molecular property.
Experiments demonstrate that HiGNN achieves state-of-the-art predictive performance on many challenging drug discovery-associated benchmark datasets.
arXiv Detail & Related papers (2022-08-30T05:16:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Predicting Aqueous Solubility of Organic Molecules Using Deep Learning
Models with Varied Molecular Representations [3.10678679607547]
The goal of this study is to develop a general model capable of predicting the solubility of a broad range of organic molecules.
Using the largest currently available solubility dataset, we implement deep learning-based models to predict solubility from molecular structure.
We find that models using molecular descriptors achieve the best performance, with GNN models also achieving good performance.
arXiv Detail & Related papers (2021-05-26T15:54:54Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
arXiv Detail & Related papers (2021-02-16T01:55:34Z) - Physics-Constrained Predictive Molecular Latent Space Discovery with
Graph Scattering Variational Autoencoder [0.0]
We develop a molecular generative model based on variational inference and graph theory in the small data regime.
The model's performance is evaluated by generating molecules with desired target properties.
arXiv Detail & Related papers (2020-09-29T09:05:27Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
We propose a novel framework called Active Semi-supervised Graph Neural Network (ASGN) by incorporating both labeled and unlabeled molecules.
In the teacher model, we propose a novel semi-supervised learning method to learn general representation that jointly exploits information from molecular structure and molecular distribution.
At last, we proposed a novel active learning strategy in terms of molecular diversities to select informative data during the whole framework learning.
arXiv Detail & Related papers (2020-07-07T04:22:39Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
We propose a novel framework, GROVER, for molecular representation learning.
GROVER can learn rich structural and semantic information of molecules from enormous unlabelled molecular data.
We pre-train GROVER with 100 million parameters on 10 million unlabelled molecules -- the biggest GNN and the largest training dataset in molecular representation learning.
arXiv Detail & Related papers (2020-06-18T08:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.