論文の概要: MODS -- A USV-oriented object detection and obstacle segmentation
benchmark
- arxiv url: http://arxiv.org/abs/2105.02359v1
- Date: Wed, 5 May 2021 22:40:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-07 13:36:47.165858
- Title: MODS -- A USV-oriented object detection and obstacle segmentation
benchmark
- Title(参考訳): MODS -- USV指向の物体検出と障害物セグメンテーションベンチマーク
- Authors: Borja Bovcon, Jon Muhovi\v{c}, Du\v{s}ko Vranac, Dean Mozeti\v{c},
Janez Per\v{s}, Matej Kristan
- Abstract要約: 海上物体検出とより一般的な海上障害物セグメンテーションの2つの主要な知覚タスクを考慮する新しい障害物検出ベンチマークMODSを紹介します。
船載IMUと同期する約81kのステレオ画像と60k以上の物体を注釈付けした新たな海洋評価データセットを提案する。
実用的なUSVナビゲーションに有用な方法で検出精度を反映した新しい障害物分割性能評価プロトコルを提案する。
- 参考スコア(独自算出の注目度): 12.356257470551348
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Small-sized unmanned surface vehicles (USV) are coastal water devices with a
broad range of applications such as environmental control and surveillance. A
crucial capability for autonomous operation is obstacle detection for timely
reaction and collision avoidance, which has been recently explored in the
context of camera-based visual scene interpretation. Owing to curated datasets,
substantial advances in scene interpretation have been made in a related field
of unmanned ground vehicles. However, the current maritime datasets do not
adequately capture the complexity of real-world USV scenes and the evaluation
protocols are not standardised, which makes cross-paper comparison of different
methods difficult and hiders the progress. To address these issues, we
introduce a new obstacle detection benchmark MODS, which considers two major
perception tasks: maritime object detection and the more general maritime
obstacle segmentation. We present a new diverse maritime evaluation dataset
containing approximately 81k stereo images synchronized with an on-board IMU,
with over 60k objects annotated. We propose a new obstacle segmentation
performance evaluation protocol that reflects the detection accuracy in a way
meaningful for practical USV navigation. Seventeen recent state-of-the-art
object detection and obstacle segmentation methods are evaluated using the
proposed protocol, creating a benchmark to facilitate development of the field.
- Abstract(参考訳): 小型無人水上機(英語版) (usv) は、環境制御や監視といった幅広い用途の沿岸水機器である。
自律運転における重要な機能は、時間的反応と衝突回避のための障害物検出であり、近年、カメラによる視覚シーンの解釈の文脈で研究されている。
データセットのキュレーションにより、関連する無人地上車両の分野でシーン解釈の大幅な進歩がなされている。
しかし、現在の海洋データセットは実世界のUSVシーンの複雑さを適切に捉えておらず、評価プロトコルは標準化されていないため、異なる手法のクロスペーパー比較が困難であり、隠蔽が進行する。
これらの問題に対処するために,海上物体検出とより一般的な海上障害物分割という2つの主要な認識課題を考慮した新しい障害物検出ベンチマークMODSを導入する。
船載IMUと同期する約81kのステレオ画像と60k以上の物体を注釈付けした新たな海洋評価データセットを提案する。
実用的なUSVナビゲーションに有用な方法で検出精度を反映した新しい障害物分割性能評価プロトコルを提案する。
提案プロトコルを用いて,最新の17種類の物体検出手法と障害物分割手法を評価し,フィールドの開発を容易にするベンチマークを作成した。
関連論文リスト
- DeTra: A Unified Model for Object Detection and Trajectory Forecasting [68.85128937305697]
提案手法は,2つのタスクの結合を軌道修正問題として定式化する。
この統合タスクに対処するために、オブジェクトの存在, ポーズ, マルチモーダルな将来の振る舞いを推測する精細化変換器を設計する。
実験では、我々のモデルはArgoverse 2 Sensor and Openデータセットの最先端性よりも優れています。
論文 参考訳(メタデータ) (2024-06-06T18:12:04Z) - Ensuring UAV Safety: A Vision-only and Real-time Framework for Collision Avoidance Through Object Detection, Tracking, and Distance Estimation [16.671696289301625]
本稿では,光学センサを用いた非協調航空車両の検出・追跡・距離推定のためのディープラーニングフレームワークを提案する。
本研究では,単眼カメラの入力のみを用いて,検出された空中物体の距離情報をリアルタイムで推定する手法を提案する。
論文 参考訳(メタデータ) (2024-05-10T18:06:41Z) - Deep Learning-Based Object Detection in Maritime Unmanned Aerial Vehicle
Imagery: Review and Experimental Comparisons [10.75221614844458]
まず,海洋UAVにおける物体検出に関する4つの課題,すなわち,対象特性の多様性,デバイス制限,海洋環境の多様性,データセットの不足について要約する。
次に,UAVの航空画像・映像データセットを概観し,MS2ship という海洋UAV航空データセットを船体検出のために提案する。
論文 参考訳(メタデータ) (2023-11-14T07:20:38Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Vision-Based Autonomous Navigation for Unmanned Surface Vessel in
Extreme Marine Conditions [2.8983738640808645]
本稿では,極端海洋環境下での目標物追跡のための自律的視覚に基づくナビゲーション・フレームワークを提案する。
提案手法は砂嵐や霧による可視性低下下でのシミュレーションで徹底的に検証されている。
結果は、ベンチマークしたMBZIRCシミュレーションデータセット全体にわたる最先端のデハージング手法と比較される。
論文 参考訳(メタデータ) (2023-08-08T14:25:13Z) - Multi-Task Cross-Modality Attention-Fusion for 2D Object Detection [6.388430091498446]
レーダとカメラデータの整合性を向上する2つの新しいレーダ前処理手法を提案する。
また,オブジェクト検出のためのMulti-Task Cross-Modality Attention-Fusion Network (MCAF-Net)を導入する。
我々のアプローチは、nuScenesデータセットにおける現在の最先端のレーダーカメラフュージョンベースのオブジェクト検出器よりも優れています。
論文 参考訳(メタデータ) (2023-07-17T09:26:13Z) - SOOD: Towards Semi-Supervised Oriented Object Detection [57.05141794402972]
本稿では, 主流の擬似ラベリングフレームワーク上に構築された, SOOD と呼ばれる, 半教師付きオブジェクト指向物体検出モデルを提案する。
提案した2つの損失をトレーニングした場合,SOODはDOTA-v1.5ベンチマークの様々な設定下で,最先端のSSOD法を超越することを示した。
論文 参考訳(メタデータ) (2023-04-10T11:10:42Z) - Perspective Aware Road Obstacle Detection [104.57322421897769]
道路障害物検出技術は,車間距離が大きくなるにつれて障害物の見かけの規模が減少するという事実を無視することを示す。
画像位置毎に仮想物体の見かけの大きさを符号化したスケールマップを演算することでこれを活用できる。
次に、この視点マップを利用して、遠近法に対応する大きさの道路合成物体に注入することで、トレーニングデータを生成する。
論文 参考訳(メタデータ) (2022-10-04T17:48:42Z) - Temporal Context for Robust Maritime Obstacle Detection [10.773819584718648]
海上障害物検出ネットワークWaSR-Tを提案する。
水面における物体反射の局所時間特性を学習することにより、WaSR-Tは障害物検出精度を大幅に向上する。
従来の単一フレーム法と比較して、WASR-Tはボートの危険域内での偽陽性検出数を41%減らし、53%以上減らした。
論文 参考訳(メタデータ) (2022-03-10T12:58:14Z) - Discovery-and-Selection: Towards Optimal Multiple Instance Learning for
Weakly Supervised Object Detection [86.86602297364826]
複数インスタンス学習(DS-MIL)と融合した発見・選択手法を提案する。
我々の提案するDS-MILアプローチは,最先端の性能を報告しながら,ベースラインを一貫して改善することができる。
論文 参考訳(メタデータ) (2021-10-18T07:06:57Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。