論文の概要: Covariant quantum kernels for data with group structure
- arxiv url: http://arxiv.org/abs/2105.03406v2
- Date: Mon, 21 Mar 2022 21:10:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-01 05:26:28.938785
- Title: Covariant quantum kernels for data with group structure
- Title(参考訳): 群構造を持つデータに対する共変量子カーネル
- Authors: Jennifer R. Glick, Tanvi P. Gujarati, Antonio D. Corcoles, Youngseok
Kim, Abhinav Kandala, Jay M. Gambetta, Kristan Temme
- Abstract要約: グループ構造を持つデータに使用できる量子カーネルのクラスを紹介する。
本手法を,グループにおける多くの本質的な学習課題の構造を具現化したコセット空間上の学習問題に適用する。
- 参考スコア(独自算出の注目度): 1.51714450051254
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of kernel functions is a common technique to extract important
features from data sets. A quantum computer can be used to estimate kernel
entries as transition amplitudes of unitary circuits. Quantum kernels exist
that, subject to computational hardness assumptions, cannot be computed
classically. It is an important challenge to find quantum kernels that provide
an advantage in the classification of real-world data. We introduce a class of
quantum kernels that can be used for data with a group structure. The kernel is
defined in terms of a unitary representation of the group and a fiducial state
that can be optimized using a technique called kernel alignment. We apply this
method to a learning problem on a coset-space that embodies the structure of
many essential learning problems on groups. We implement the learning algorithm
with $27$ qubits on a superconducting processor.
- Abstract(参考訳): カーネル関数の使用は、データセットから重要な特徴を抽出する一般的なテクニックである。
量子コンピュータは、カーネルエントリをユニタリ回路の遷移振幅として推定することができる。
量子核は、計算の困難さを前提として、古典的に計算できない存在である。
実世界のデータの分類において有利となる量子カーネルを見つけることは重要な課題である。
グループ構造を持つデータに使用できる量子カーネルのクラスを紹介する。
カーネルは、群のユニタリ表現と、カーネルアライメントと呼ばれる技術を使って最適化できるfiducial stateという用語で定義される。
本手法をコセット空間上の学習問題に適用し,群上の多くの本質的学習問題の構造を具現化する。
超伝導プロセッサ上で27ドルの量子ビットで学習アルゴリズムを実装した。
関連論文リスト
- The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Quantum Machine Learning: Quantum Kernel Methods [0.0]
カーネルメソッドは古典的な機械学習において強力で一般的なテクニックである。
量子コンピュータ上でしか効率的に計算できない量子特徴空間を使用することで、量子上の優位性を導出することができる。
データ依存型投影量子カーネルは、古典的カーネルに対して大きな利点をもたらすことが示されている。
論文 参考訳(メタデータ) (2024-05-02T23:45:29Z) - Quantum Kernel Machine Learning With Continuous Variables [0.0]
人気の高いqubitフレームワークは、量子カーネル機械学習に関する最近の研究を支配している。
連続変数(CV)量子コンピューティングプラットフォームに対するこれらの概念を理解するための比較フレームワークは存在しない。
論文 参考訳(メタデータ) (2024-01-11T03:49:40Z) - On the expressivity of embedding quantum kernels [1.6385815610837167]
任意のカーネル関数に対して、対応する量子特徴写像と埋め込み量子カーネルが存在することが分かる。
シフト不変カーネルに対しては、ランダムフーリエ特徴の技法を用いて、全てのカーネルの広いクラス内でそれらが普遍的であることを示す。
この結果を合成カーネルと呼ばれる新しいクラスに拡張し、最近の研究で導入された投影量子カーネルも含むことを示した。
論文 参考訳(メタデータ) (2023-09-25T18:00:01Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
トポロジカルデータ分析(TDA)は、複雑なデータから意味のある洞察を抽出する強力なツールとして登場した。
本稿では,ベッチ曲線の次数増加に基づくBettiカーネルの量子的定義法を提案する。
論文 参考訳(メタデータ) (2023-07-14T14:48:52Z) - Noisy Quantum Kernel Machines [58.09028887465797]
量子学習マシンの新たなクラスは、量子カーネルのパラダイムに基づくものである。
消散と脱コヒーレンスがパフォーマンスに与える影響について検討する。
量子カーネルマシンでは,デコヒーレンスや散逸を暗黙の正規化とみなすことができる。
論文 参考訳(メタデータ) (2022-04-26T09:52:02Z) - Quantum kernels with squeezed-state encoding for machine learning [0.0]
連続可変量子状態にデータを符号化することで量子カーネル法を一般化する。
カーネルは量子コンピュータ上で計算され、古典的な機械学習と組み合わせられる。
論文 参考訳(メタデータ) (2021-08-25T08:24:54Z) - Kernel Continual Learning [117.79080100313722]
カーネル連続学習は、破滅的な忘れ事に取り組むための、シンプルだが効果的な連続学習の変種である。
エピソードメモリユニットは、カーネルリッジ回帰に基づいてタスク固有の分類器を学ぶために、各タスクのサンプルのサブセットを格納する。
タスク毎にデータ駆動カーネルを学ぶための変動ランダム機能。
論文 参考訳(メタデータ) (2021-07-12T22:09:30Z) - Kernel Identification Through Transformers [54.3795894579111]
カーネル選択はガウス過程(GP)モデルの性能決定において中心的な役割を果たす。
この研究は、高次元GP回帰モデルのためのカスタムカーネル関数を構築するという課題に対処する。
KITT: Kernel Identification through Transformersを提案する。
論文 参考訳(メタデータ) (2021-06-15T14:32:38Z) - Training Quantum Embedding Kernels on Near-Term Quantum Computers [0.08563354084119063]
量子コンピュータのヒルベルト空間にデータを埋め込むことで構築された量子埋め込みカーネル(QEK)は、特定の量子カーネル技術である。
まず、量子埋め込みカーネルを紹介し、ノイズの多い短期量子コンピュータ上でそれらを実現する際に生じる現実的な問題を解析する。
論文 参考訳(メタデータ) (2021-05-05T18:41:13Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
量子カーネルの利点は,大規模データセット,計測回数の少ないもの,システムノイズなどにおいて消失することを示した。
我々の研究は、NISQデバイス上で量子優位性を得るための先進量子カーネルの探索に関する理論的ガイダンスを提供する。
論文 参考訳(メタデータ) (2021-03-31T02:41:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。