論文の概要: Segmenting Hybrid Trajectories using Latent ODEs
- arxiv url: http://arxiv.org/abs/2105.03835v1
- Date: Sun, 9 May 2021 04:51:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-11 14:47:10.669975
- Title: Segmenting Hybrid Trajectories using Latent ODEs
- Title(参考訳): 潜在ODEを用いたハイブリッド軌道の分割
- Authors: Ruian Shi, Quaid Morris
- Abstract要約: ハイブリッド軌道内における再構成と変更点検出を行うための潜在セグメントODE(LatSegODE)を提案する。
pruned exact linear time (PELT)アルゴリズムを適用して、潜時ダイナミクスが再スタートする点を検出する。
LatSegODEは、正弦波、Lotka Volterraダイナミクス、UCI文字トレイの合成データセットを含む再構築およびセグメント化タスクのベースラインを上回っています。
- 参考スコア(独自算出の注目度): 3.843574434245426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smooth dynamics interrupted by discontinuities are known as hybrid systems
and arise commonly in nature. Latent ODEs allow for powerful representation of
irregularly sampled time series but are not designed to capture trajectories
arising from hybrid systems. Here, we propose the Latent Segmented ODE
(LatSegODE), which uses Latent ODEs to perform reconstruction and changepoint
detection within hybrid trajectories featuring jump discontinuities and
switching dynamical modes. Where it is possible to train a Latent ODE on the
smooth dynamical flows between discontinuities, we apply the pruned exact
linear time (PELT) algorithm to detect changepoints where latent dynamics
restart, thereby maximizing the joint probability of a piece-wise continuous
latent dynamical representation. We propose usage of the marginal likelihood as
a score function for PELT, circumventing the need for model complexity-based
penalization. The LatSegODE outperforms baselines in reconstructive and
segmentation tasks including synthetic data sets of sine waves, Lotka Volterra
dynamics, and UCI Character Trajectories.
- Abstract(参考訳): 不連続によって中断される滑らかなダイナミクスはハイブリッドシステムと呼ばれ、自然界で一般的に発生する。
遅延ODEは、不規則にサンプリングされた時系列の強力な表現を可能にするが、ハイブリッドシステムから発生する軌跡を捉えるように設計されていない。
本稿では、ラテントODEを用いて、ジャンプ不連続性や動的モードの切り替えを含むハイブリッドトラジェクトリ内の再構成と変更点検出を行うラテントセグメンテッドODE(LatSegODE)を提案する。
非連続性間のスムーズな動的流れについて遅延ODEを訓練することが可能な場合、pruned exact linear time (PELT)アルゴリズムを適用して、潜時力学が再起動する変化点を検出し、断片的連続潜時力学表現の結合確率を最大化する。
モデル複雑性に基づくペナリゼーションの必要性を回避し,peltのスコア関数としての限界可能性の利用を提案する。
latsegodeは、正弦波の合成データセット、ロトカ・ボルテラダイナミクス、uci文字軌道を含む再構成およびセグメンテーションタスクのベースラインを上回っている。
関連論文リスト
- Path-minimizing Latent ODEs for improved extrapolation and inference [0.0]
潜在ODEモデルは動的システムの柔軟な記述を提供するが、外挿と複雑な非線形力学の予測に苦労することがある。
本稿では、時間に依存しない潜在表現を奨励することで、この二分法を利用する。
遅延空間における一般的な変分ペナルティを各システムのパス長の$ell$ペナルティに置き換えることで、モデルは異なる構成のシステムと容易に区別できるデータ表現を学ぶ。
これにより、GRU、RNN、LSTM/デコーダによるベースラインODEモデルと比較して、より高速なトレーニング、より小さなモデル、より正確で長時間の外挿が可能となる。
論文 参考訳(メタデータ) (2024-10-11T15:50:01Z) - Oscillatory State-Space Models [61.923849241099184]
長いシーケンスを効率的に学習するための線形状態空間モデル(LinOSS)を提案する。
高速な連想並列スキャンを用いて時間とともに統合された安定な離散化により、提案した状態空間モデルが得られる。
我々はLinOSSが普遍であること、すなわち時間変化関数間の連続および因果作用素写像を近似できることを示す。
論文 参考訳(メタデータ) (2024-10-04T22:00:13Z) - Unconditional stability of a recurrent neural circuit implementing divisive normalization [0.0]
任意次元ORGaNICs回路における非条件局所安定性の顕著な特性を証明した。
ORGaNICsは、勾配のクリッピング/スケーリングなしで、時間経過によるバックプロパゲーションによって訓練できることを示す。
論文 参考訳(メタデータ) (2024-09-27T17:46:05Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Hybrid Recurrent Models Support Emergent Descriptions for Hierarchical Planning and Control [0.8749675983608172]
リカレントスイッチング線形力学系(rSLDS)として知られるハイブリッド状態空間モデルのクラスは、意味のある振る舞い単位を発見する。
我々は、rSLDSによって形成されたリッチな表現は、計画と制御に有用な抽象化を提供することができると提案する。
本稿では,低レベル線形二乗制御器上に離散型MDPを配置する,アクティブ推論にインスパイアされた新しい階層型モデルベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-20T16:02:54Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
マルコフジャンプ線形系に対する制御器の合成法を提案する。
本手法は,MJLSの離散(モードジャンピング)と連続(確率線形)の両方の挙動を捉える有限状態抽象化に基づいている。
本手法を複数の現実的なベンチマーク問題,特に温度制御と航空機の配送問題に適用する。
論文 参考訳(メタデータ) (2022-12-01T17:36:30Z) - Deep Explicit Duration Switching Models for Time Series [84.33678003781908]
状態依存型と時間依存型の両方のスイッチングダイナミクスを識別できるフレキシブルモデルを提案する。
状態依存スイッチングは、リカレントな状態-スイッチ接続によって実現される。
時間依存スイッチング動作を改善するために、明示的な期間カウント変数が使用される。
論文 参考訳(メタデータ) (2021-10-26T17:35:21Z) - Data-driven reduced order modeling of environmental hydrodynamics using
deep autoencoders and neural ODEs [3.4527210650730393]
減弱基底表現の発見にディープオートエンコーダを用いた場合について検討する。
テスト問題としては,シリンダーまわりの非圧縮性流れや,河口系における浅水流体力学の現実的応用などが挙げられる。
論文 参考訳(メタデータ) (2021-07-06T17:45:37Z) - Neural Ordinary Differential Equations for Data-Driven Reduced Order
Modeling of Environmental Hydrodynamics [4.547988283172179]
流体シミュレーションにおける神経常微分方程式の利用について検討する。
テスト問題としては,シリンダー周辺の非圧縮性流れや河川・河口系における浅水流体力学の現実的応用などが挙げられる。
本研究では,ニューラル ODE が潜在空間力学の安定かつ正確な進化のためのエレガントな枠組みを提供することを示唆する。
論文 参考訳(メタデータ) (2021-04-22T19:20:47Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
DiffPDは、暗黙の時間積分を持つ効率的な微分可能なソフトボディシミュレータである。
我々はDiffPDの性能を評価し,様々な応用における標準ニュートン法と比較して4~19倍のスピードアップを観測した。
論文 参考訳(メタデータ) (2021-01-15T00:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。