論文の概要: Using Diachronic Distributed Word Representations as Models of Lexical
Development in Children
- arxiv url: http://arxiv.org/abs/2105.05091v1
- Date: Tue, 11 May 2021 14:44:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-12 18:01:23.371514
- Title: Using Diachronic Distributed Word Representations as Models of Lexical
Development in Children
- Title(参考訳): ディアクロニック分散単語表現を幼児の語彙発達モデルとして用いる
- Authors: Arijit Gupta, Rajaswa Patil and Veeky Baths
- Abstract要約: 小児の語彙発達の時系列モデリングと分析を行うために,ダイアクロニック分散語表現を用いる。
子ども向け成人音声における語彙知識の飽和レベルと比較し,子どもの語彙知識の成長の動態を時間とともに示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has shown that distributed word representations can encode
abstract semantic and syntactic information from child-directed speech. In this
paper, we use diachronic distributed word representations to perform temporal
modeling and analysis of lexical development in children. Unlike all previous
work, we use temporally sliced speech corpus to learn distributed word
representations of child and child-directed speech. Through our modeling
experiments, we demonstrate the dynamics of growing lexical knowledge in
children over time, as compared against a saturated level of lexical knowledge
in child-directed adult speech. We also fit linear mixed-effects models with
the rate of semantic change in the diachronic representations and word
frequencies. This allows us to inspect the role of word frequencies towards
lexical development in children. Further, we perform a qualitative analysis of
the diachronic representations from our model, which reveals the categorization
and word associations in the mental lexicon of children.
- Abstract(参考訳): 近年の研究では、分散単語表現は、子供向け音声から抽象意味的および構文的情報をエンコードできることが示されている。
本稿では,子どもの語彙発達の時間的モデリングと分析を行うために,ダイアクロニックな単語表現を用いる。
先行研究と異なり, 時間分割音声コーパスを用いて, 子どもと子ども向け音声の分散単語表現を学習する。
本研究は, 幼児向け成人音声における語彙知識の飽和レベルと比較して, 子どもの語彙知識の時間的増加のダイナミクスを示す。
また,線形混合効果モデルとダイアクロニック表現と単語周波数における意味的変化率を適合させた。
これにより、幼児の語彙発達における単語頻度の役割を検査できる。
さらに, 幼児の心的語彙におけるカテゴリー化と単語の関連を明らかにするモデルを用いて, ダイアクロニック表現の質的分析を行った。
関連論文リスト
- A model of early word acquisition based on realistic-scale audiovisual naming events [10.047470656294333]
音声知覚入力における正規性からの統計的学習により,早期語が獲得できる範囲について検討した。
生音声の統計的規則性や画素レベルの視覚入力から学習するモデルを用いて,12ヵ月までの幼児の語学学習を現実的な環境でシミュレーションした。
以上の結果から, 幼児期と同等の語彙成長速度で, 単語の認識とそれに対応する視覚オブジェクトの関連付けを効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2024-06-07T21:05:59Z) - Caregiver Talk Shapes Toddler Vision: A Computational Study of Dyadic
Play [8.164232628099619]
本稿では, ディヤドプレイにおける視覚表現学習の計算モデルを提案する。
実介護者の統計値に一致した発話は, カテゴリー認識の改善を支援する表現を生じさせることを示す。
論文 参考訳(メタデータ) (2023-12-07T08:18:40Z) - Visual Grounding Helps Learn Word Meanings in Low-Data Regimes [47.7950860342515]
現代のニューラル言語モデル(LM)は、人間の文の生成と理解をモデル化するための強力なツールである。
しかし、これらの結果を得るためには、LMは明らかに非人間的な方法で訓練されなければならない。
より自然主義的に訓練されたモデルは、より人間らしい言語学習を示すのか?
本稿では,言語習得における重要なサブタスクである単語学習の文脈において,この問題を考察する。
論文 参考訳(メタデータ) (2023-10-20T03:33:36Z) - BabySLM: language-acquisition-friendly benchmark of self-supervised
spoken language models [56.93604813379634]
音声表現を学習するための自己指導技術は、人間のラベルを必要とせずに、音声への露出から言語能力を高めることが示されている。
語彙および構文レベルで音声言語モデルを探索するために,言語習得に親しみやすいベンチマークを提案する。
テキストと音声のギャップを埋めることと、クリーンな音声とその内話のギャップを埋めることである。
論文 参考訳(メタデータ) (2023-06-02T12:54:38Z) - Integrating Form and Meaning: A Multi-Task Learning Model for Acoustic
Word Embeddings [19.195728241989702]
本稿では,トップダウン語彙知識を音響単語埋め込みの訓練手順に組み込んだマルチタスク学習モデルを提案する。
我々は3つの言語で実験を行い、語彙知識を取り入れることで、埋め込み空間の識別性が向上することを示した。
論文 参考訳(メタデータ) (2022-09-14T13:33:04Z) - VGSE: Visually-Grounded Semantic Embeddings for Zero-Shot Learning [113.50220968583353]
ゼロショット学習のための識別的視覚特性を含むセマンティック埋め込みを発見することを提案する。
本モデルでは,画像の集合を視覚的類似性に応じて局所的な画像領域の集合に視覚的に分割する。
視覚的に接地されたセマンティック埋め込みは、様々なZSLモデルにまたがる単語埋め込みよりも、大きなマージンで性能を向上することを示した。
論文 参考訳(メタデータ) (2022-03-20T03:49:02Z) - Perception Point: Identifying Critical Learning Periods in Speech for
Bilingual Networks [58.24134321728942]
ディープニューラルベース視覚唇読解モデルにおける認知的側面を比較し,識別する。
我々は、認知心理学におけるこれらの理論と独自のモデリングの間に強い相関関係を観察する。
論文 参考訳(メタデータ) (2021-10-13T05:30:50Z) - Word Acquisition in Neural Language Models [0.38073142980733]
ニューラルネットワークモデルは,学習中に個々の単語を習得し,学習曲線を抽出し,600以上の単語の獲得年齢を推定する。
子どもや言語モデルでは, 具体性, 単語長, 語彙クラスの影響が顕著に異なることがわかった。
論文 参考訳(メタデータ) (2021-10-05T23:26:16Z) - Decomposing lexical and compositional syntax and semantics with deep
language models [82.81964713263483]
GPT2のような言語変換器の活性化は、音声理解中の脳活動に線形にマップすることが示されている。
本稿では,言語モデルの高次元アクティベーションを,語彙,構成,構文,意味表現の4つのクラスに分類する分類法を提案する。
その結果は2つの結果が浮かび上がった。
まず、構成表現は、語彙よりも広範な皮質ネットワークを募集し、両側の側頭、頭頂、前頭前皮質を包含する。
論文 参考訳(メタデータ) (2021-03-02T10:24:05Z) - Using Known Words to Learn More Words: A Distributional Analysis of
Child Vocabulary Development [0.0]
分布統計の語彙特性を用いた語彙発達におけるアイテムベース変動について検討した。
単語軌跡を横断的に予測し,語彙発達の傾向に光を当てた。
また, 子どもが単語を知っているかどうかの最適な分布予測器は, 単語が共起する傾向にある他の単語の数であることを示す。
論文 参考訳(メタデータ) (2020-09-15T01:18:21Z) - Where New Words Are Born: Distributional Semantic Analysis of Neologisms
and Their Semantic Neighborhoods [51.34667808471513]
分散意味論のパラダイムで定式化されたセマンティック隣人のセマンティック・スパシティと周波数成長率という2つの要因の重要性について検討する。
いずれの因子も単語の出現を予測できるが,後者の仮説はより支持される。
論文 参考訳(メタデータ) (2020-01-21T19:09:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。