論文の概要: Axes for Sociotechnical Inquiry in AI Research
- arxiv url: http://arxiv.org/abs/2105.06551v1
- Date: Mon, 26 Apr 2021 16:49:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-18 17:21:28.243500
- Title: Axes for Sociotechnical Inquiry in AI Research
- Title(参考訳): AI研究における社会技術探究の軸
- Authors: Sarah Dean, Thomas Krendl Gilbert, Nathan Lambert and Tom Zick
- Abstract要約: 技術開発の新たな発展領域を探求する4つの方向を提案する。
本論文は、社会技術調査のためのレキシコンを提供し、消費者向けドローン技術の例を通してそれを解説する。
- 参考スコア(独自算出の注目度): 3.0215443986383734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of artificial intelligence (AI) technologies has far exceeded
the investigation of their relationship with society. Sociotechnical inquiry is
needed to mitigate the harms of new technologies whose potential impacts remain
poorly understood. To date, subfields of AI research develop primarily
individual views on their relationship with sociotechnics, while tools for
external investigation, comparison, and cross-pollination are lacking. In this
paper, we propose four directions for inquiry into new and evolving areas of
technological development: value--what progress and direction does a field
promote, optimization--how the defined system within a problem formulation
relates to broader dynamics, consensus--how agreement is achieved and who is
included in building it, and failure--what methods are pursued when the problem
specification is found wanting. The paper provides a lexicon for sociotechnical
inquiry and illustrates it through the example of consumer drone technology.
- Abstract(参考訳): 人工知能(AI)技術の発展は、社会との関係の調査をはるかに上回っている。
社会技術的調査は、潜在的な影響が十分に理解されていない新しい技術の害を軽減するために必要である。
現在、AI研究のサブフィールドは、主に社会技術者との関係についての個々の見解を発達させており、外部調査、比較、相互補間のためのツールが不足している。
本稿では,新しい技術開発分野を探求する4つの方法を提案する:価値 - 進歩と方向性がフィールドを促進,最適化する - 問題の定式化における定義されたシステムが,より広範なダイナミクスとどのように関連するか,コンセンサス- 合意が達成され,誰がそれを構築するか,そして,問題仕様が望まれている場合の失敗方法を求める。
本論文は、社会技術調査のためのレキシコンを提供し、消費者向けドローン技術の例を通してそれを解説する。
関連論文リスト
- WISDOM: An AI-powered framework for emerging research detection using weak signal analysis and advanced topic modeling [1.8434042562191815]
我々は、新たな研究テーマを検出するために、WISDOMと呼ばれる自動化人工知能対応フレームワークを提案する。
WISDOMは、高度なトピックモデリングと弱い信号分析を用いて、新たな研究テーマを検出する。
水中センシング技術の分野において,WISDOMによる研究の進展と動向の把握における性能の評価を行った。
論文 参考訳(メタデータ) (2024-09-09T18:08:08Z) - Open Problems in Technical AI Governance [93.89102632003996]
テクニカルAIガバナンス(Technical AI Governance)は、AIの効果的なガバナンスを支援するための技術分析とツールである。
本論文は、AIガバナンスへの貢献を目指す技術研究者や研究資金提供者のためのリソースとして意図されている。
論文 参考訳(メタデータ) (2024-07-20T21:13:56Z) - A Disruptive Research Playbook for Studying Disruptive Innovations [11.619658523864686]
本稿では、説得力があり社会的に関係のある研究課題を定式化するためのガイドを提供するための研究プレイブックを提案する。
私たちは、AIとAR/VRの2つの破壊的なテクノロジの影響を疑問視するために使用することができることを示しています。
論文 参考訳(メタデータ) (2024-02-20T19:13:36Z) - A Scalable and Automated Framework for Tracking the likely Adoption of
Emerging Technologies [3.4530027457862]
本稿では,新しい技術の採用や拒絶の可能性を追及するための,スケーラブルで自動化されたフレームワークを提案する。
新興技術への言及を含むソーシャルメディアテキストの大規模なコーパスが編纂された。
肯定的な感情表現は、テクノロジーユーザの採用、統合、利用に対する受容に影響を与える可能性の増加を推し進め、ネガティブな感情は、導入者による新興技術の拒絶に影響を及ぼす可能性の増大を推し進める。
論文 参考訳(メタデータ) (2024-01-16T16:42:14Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Enhancing Artificial intelligence Policies with Fusion and Forecasting:
Insights from Indian Patents Using Network Analysis [0.0]
本稿では,人工知能(AI)技術の相互接続性と相互依存性について述べる。
異なる時間窓を通して技術を分析し、その重要性を定量化することで、AIのランドスケープを形成する重要なコンポーネントに関する重要な洞察を明らかにしました。
論文 参考訳(メタデータ) (2023-04-20T18:37:11Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - AI Development for the Public Interest: From Abstraction Traps to
Sociotechnical Risks [2.765897573789737]
AIの安全性、公正機械学習(Fair ML)、HIL(Human-in-the-Loop)オートノミー(Human-in-the-Loop)の3つの分野における社会技術調査の出現を追跡調査する。
各サブフィールドにおいて、PIT(Public Interest Technology)の認識は、規範的社会秩序の中での技術的システムの過去の統合によって直面する特定の危険に起因していることを示す。
本稿では,AIにおける社会工学系大学院教育への統一的アプローチのロードマップを示す。
論文 参考訳(メタデータ) (2021-02-04T18:54:20Z) - Constraint Programming Algorithms for Route Planning Exploiting
Geometrical Information [91.3755431537592]
本稿では,経路計画問題に対する新しいアルゴリズムの開発に関する現在の研究動向について概説する。
これまでの研究は、特にユークリッド旅行セールスパーソン問題(ユークリッドTSP)に焦点を当ててきた。
目的は、将来ユークリッド自動車問題(ユークリッドVRP)など、同じカテゴリーの他の問題にも得られる結果を活用することである。
論文 参考訳(メタデータ) (2020-09-22T00:51:45Z) - Deep Technology Tracing for High-tech Companies [67.86308971806322]
我々は、各ハイテク企業にカスタマイズされた最も可能な技術方向を自動的に見つけるために、新しいデータ駆動ソリューション、すなわちDeep Technology Forecasting(DTF)フレームワークを開発する。
DTFは、潜在的な競合認識(PCR)、協調技術認識(CTR)、Deep Technology Tracing(DTT)ニューラルネットワークの3つのコンポーネントで構成されている。
論文 参考訳(メタデータ) (2020-01-02T07:44:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。