Parallel Bayesian Optimization of Multiple Noisy Objectives with
Expected Hypervolume Improvement
- URL: http://arxiv.org/abs/2105.08195v1
- Date: Mon, 17 May 2021 23:31:42 GMT
- Title: Parallel Bayesian Optimization of Multiple Noisy Objectives with
Expected Hypervolume Improvement
- Authors: Samuel Daulton, Maximilian Balandat, Eytan Bakshy
- Abstract summary: Multi-objective Bayesian optimization is a powerful approach for identifying the optimal trade-offs between the objectives.
Existing methods tend to perform poorly when observations are corrupted by noise.
We propose a novel acquisition function, NEHVI, that overcomes this important practical limitation.
We show that NEHVI achieves state-of-the-art performance in noisy and large-batch environments.
- Score: 14.669401425601974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimizing multiple competing black-box objectives is a challenging problem
in many fields, including science, engineering, and machine learning.
Multi-objective Bayesian optimization is a powerful approach for identifying
the optimal trade-offs between the objectives with very few function
evaluations. However, existing methods tend to perform poorly when observations
are corrupted by noise, as they do not take into account uncertainty in the
true Pareto frontier over the previously evaluated designs. We propose a novel
acquisition function, NEHVI, that overcomes this important practical limitation
by applying a Bayesian treatment to the popular expected hypervolume
improvement criterion to integrate over this uncertainty in the Pareto
frontier. We further argue that, even in the noiseless setting, the problem of
generating multiple candidates in parallel reduces that of handling uncertainty
in the Pareto frontier. Through this lens, we derive a natural parallel variant
of NEHVI that can efficiently generate large batches of candidates. We provide
a theoretical convergence guarantee for optimizing a Monte Carlo estimator of
NEHVI using exact sample-path gradients. Empirically, we show that NEHVI
achieves state-of-the-art performance in noisy and large-batch environments.
Related papers
- Non-Myopic Multi-Objective Bayesian Optimization [64.31753000439514]
We consider the problem of finite-horizon sequential experimental design to solve multi-objective optimization problems.
This problem arises in many real-world applications, including materials design.
We propose the first set of non-myopic methods for MOO problems.
arXiv Detail & Related papers (2024-12-11T04:05:29Z) - STBA: Towards Evaluating the Robustness of DNNs for Query-Limited Black-box Scenario [50.37501379058119]
We propose the Spatial Transform Black-box Attack (STBA) to craft formidable adversarial examples in the query-limited scenario.
We show that STBA could effectively improve the imperceptibility of the adversarial examples and remarkably boost the attack success rate under query-limited settings.
arXiv Detail & Related papers (2024-03-30T13:28:53Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Distributed Extra-gradient with Optimal Complexity and Communication
Guarantees [60.571030754252824]
We consider monotone variational inequality (VI) problems in multi-GPU settings where multiple processors/workers/clients have access to local dual vectors.
Extra-gradient, which is a de facto algorithm for monotone VI problems, has not been designed to be communication-efficient.
We propose a quantized generalized extra-gradient (Q-GenX), which is an unbiased and adaptive compression method tailored to solve VIs.
arXiv Detail & Related papers (2023-08-17T21:15:04Z) - Constrained multi-objective optimization of process design parameters in
settings with scarce data: an application to adhesive bonding [48.7576911714538]
Finding the optimal process parameters for an adhesive bonding process is challenging.
Traditional evolutionary approaches (such as genetic algorithms) are then ill-suited to solve the problem.
In this research, we successfully applied specific machine learning techniques to emulate the objective and constraint functions.
arXiv Detail & Related papers (2021-12-16T10:14:39Z) - A Hybrid 2-stage Neural Optimization for Pareto Front Extraction [3.918940900258555]
A major obstacle to optimal trade-off solutions is that they don't always converge to each other.
We propose a two-stage approach that is accurate and cost-effective.
arXiv Detail & Related papers (2021-01-27T20:56:19Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
Surrogate models have been successfully used in likelihood-free inference to decrease the number of simulator evaluations.
We propose a Deep Gaussian Process (DGP) surrogate model that can handle more irregularly behaved target distributions.
Our experiments show how DGPs can outperform GPs on objective functions with multimodal distributions and maintain a comparable performance in unimodal cases.
arXiv Detail & Related papers (2020-06-18T14:24:05Z) - Differentiable Expected Hypervolume Improvement for Parallel
Multi-Objective Bayesian Optimization [11.956059322407437]
We leverage recent advances in programming models and hardware acceleration for multi-objective BO using Expected Hyper Improvement (EHVI)
We derive a novel formulation of q-Expected Hyper Improvement (qEHVI), an acquisition function that extends EHVI to the parallel, constrained evaluation setting.
Our empirical evaluation demonstrates that qEHVI is computationally tractable in many practical scenarios and outperforms state-of-the-art multi-objective BO algorithms at a fraction of their wall time.
arXiv Detail & Related papers (2020-06-09T06:57:47Z) - Parallel Predictive Entropy Search for Multi-objective Bayesian
Optimization with Constraints [0.0]
Real-world problems often involve the optimization of several objectives under multiple constraints.
This article introduces PPESMOC, an information-based batch method for the simultaneous optimization of black-box functions.
Iteratively, PPESMOC selects a batch of input locations at which to evaluate the black-boxes.
arXiv Detail & Related papers (2020-04-01T17:37:58Z) - Scalable Constrained Bayesian Optimization [10.820024633762596]
The global optimization of a high-dimensional black-box function under black-box constraints is a pervasive task in machine learning, control, and the scientific community.
We propose the scalable constrained Bayesian optimization (SCBO) algorithm that overcomes the above challenges and pushes the state-the-art.
arXiv Detail & Related papers (2020-02-20T01:48:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.