論文の概要: Explainable Health Risk Predictor with Transformer-based Medicare Claim
Encoder
- arxiv url: http://arxiv.org/abs/2105.09428v1
- Date: Wed, 19 May 2021 22:39:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-21 13:50:03.873384
- Title: Explainable Health Risk Predictor with Transformer-based Medicare Claim
Encoder
- Title(参考訳): トランスベースメディケアクレームエンコーダを用いた説明可能な健康リスク予測装置
- Authors: Chuhong Lahlou, Ancil Crayton, Caroline Trier, Evan Willett
- Abstract要約: 現代の言語モデルは、多くの健康関連タスクにおいて重要な役割を果たしてきた。
本稿では,患者の寛解予測に対するこれらのモデルの最初の応用について述べる。
我々は、下流予測タスクの実行を支援するために、メディケアのセマンティクスを学ぶために注意に基づくトランスフォーマーを訓練する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In 2019, The Centers for Medicare and Medicaid Services (CMS) launched an
Artificial Intelligence (AI) Health Outcomes Challenge seeking solutions to
predict risk in value-based care for incorporation into CMS Innovation Center
payment and service delivery models. Recently, modern language models have
played key roles in a number of health related tasks. This paper presents, to
the best of our knowledge, the first application of these models to patient
readmission prediction. To facilitate this, we create a dataset of 1.2 million
medical history samples derived from the Limited Dataset (LDS) issued by CMS.
Moreover, we propose a comprehensive modeling solution centered on a deep
learning framework for this data. To demonstrate the framework, we train an
attention-based Transformer to learn Medicare semantics in support of
performing downstream prediction tasks thereby achieving 0.91 AUC and 0.91
recall on readmission classification. We also introduce a novel data
pre-processing pipeline and discuss pertinent deployment considerations
surrounding model explainability and bias.
- Abstract(参考訳): 2019年、メディケア・メディケイドサービスセンター(CMS)は、CMSイノベーションセンターの支払いおよびサービス提供モデルに組み込まれる価値ベースのケアのリスクを予測するソリューションを模索する人工知能(AI)ヘルスアウトカムチャレンジ(Health Outcomes Challenge)を立ち上げた。
近年、現代言語モデルは、多くの健康関連タスクにおいて重要な役割を果たしている。
本稿では,患者の寛解予測に対するこれらのモデルの最初の応用について述べる。
そこで我々は,cmsが発行する限定データセット (lds) から得られた120万の医療履歴サンプルのデータセットを作成する。
さらに,このデータのための深層学習フレームワークに着目した総合的なモデリングソリューションを提案する。
この枠組みを実証するために,注意に基づくトランスフォーマーを訓練し,下流予測タスクの実行支援としてメディケアセマンティクスを学習し,読み出し分類において 0.91 auc と 0.91 のリコールを実現する。
また,新しいデータ前処理パイプラインを導入し,モデル説明可能性とバイアスを取り巻く関連するデプロイメントに関する考察を行う。
関連論文リスト
- Health AI Developer Foundations [18.690656891269686]
Health AI Developer Foundations(HAI-DEF)は、トレーニング済み、ドメイン固有の基礎モデル、ツール、レシピのスイートで、ヘルスアプリケーションのための機械学習の構築を加速する。
モデルは、放射線学(X線とCT)、病理学、皮膚画像、オーディオなど、様々なモダリティや領域をカバーする。
これらのモデルは、ラベル付きデータが少なく、トレーニング時間が短く、計算コストが削減されたAI開発を容易にする、ドメイン固有の埋め込みを提供する。
論文 参考訳(メタデータ) (2024-11-22T18:51:51Z) - GAMedX: Generative AI-based Medical Entity Data Extractor Using Large Language Models [1.123722364748134]
本稿では,Large Language Models(LLMs)を利用した名前付きエンティティ認識(NER)アプローチであるGAMedXを紹介する。
この方法論は、NERのためのオープンソースのLCMを統合し、特殊な医学用語の複雑さをナビゲートするために、連鎖プロンプトとピダンティックスキーマを構造化出力に利用している。
その結果, 評価データセットの1つに対して, 98%の精度でROUGE F1の有意なスコアが得られた。
論文 参考訳(メタデータ) (2024-05-31T02:53:22Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Federated Learning of Medical Concepts Embedding using BEHRT [0.0]
医療概念の埋め込み学習のための連合学習手法を提案する。
我々のアプローチは、EHRのディープニューラルネットワークモデルであるBEHRTのような埋め込みモデルに基づいている。
我々は、FLで訓練されたモデルと集中型データで訓練されたモデルのパフォーマンスを比較した。
論文 参考訳(メタデータ) (2023-05-22T14:05:39Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
機械学習アルゴリズムの出力を監視するために必要なインフラストラクチャを評価する。
モデルのモニタリングと更新の例を示す2つのシナリオを提示します。
論文 参考訳(メタデータ) (2023-03-02T17:27:45Z) - Foresight -- Deep Generative Modelling of Patient Timelines using
Electronic Health Records [46.024501445093755]
医学史の時間的モデリングは、将来の出来事を予測し、シミュレートしたり、リスクを見積り、代替診断を提案したり、合併症を予測するために使用することができる。
我々は、文書テキストを構造化されたコード化された概念に変換するためにNER+Lツール(MedCAT)を使用する新しいGPT3ベースのパイプラインであるForesightを提示する。
論文 参考訳(メタデータ) (2022-12-13T19:06:00Z) - Can Current Explainability Help Provide References in Clinical Notes to
Support Humans Annotate Medical Codes? [53.45585591262433]
本稿では、注意スコアに基づくxRAC-ATTNと、モデルに依存しない知識蒸留に基づくxRAC-KDの2つのアプローチについて説明する。
我々は,xRAC-ATTNが強調した支持エビデンステキストが,xRAC-KDよりも高品質であるのに対して,xRAC-KDは本番環境において潜在的に有利であることを示した。
論文 参考訳(メタデータ) (2022-10-28T04:06:07Z) - medigan: A Python Library of Pretrained Generative Models for Enriched
Data Access in Medical Imaging [3.8568465270960264]
mediganは、オープンソースのフレームワークに依存しないPythonライブラリとして実装された、事前訓練された生成モデルのワンストップショップである。
研究者や開発者は、ほんの数行のコードでトレーニングデータを作成し、拡大し、ドメインに適応することができる。
ライブラリのスケーラビリティと設計は、統合され、容易に利用できる事前訓練された生成モデルの増加によって実証される。
論文 参考訳(メタデータ) (2022-09-28T23:45:33Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。