Negational Symmetry of Quantum Neural Networks for Binary Pattern
Classification
- URL: http://arxiv.org/abs/2105.09580v1
- Date: Thu, 20 May 2021 08:13:38 GMT
- Title: Negational Symmetry of Quantum Neural Networks for Binary Pattern
Classification
- Authors: Nanqing Dong, Michael Kampffmeyer, Irina Voiculescu, Eric Xing
- Abstract summary: Quantum neural networks (QNNs) have shown promising results in solving simple machine learning tasks.
We present and analyze a new form of invariance embedded in QNNs for both quantum binary classification and quantum representation learning.
We empirically evaluate the negational symmetry of QNNs in binary pattern classification tasks using Google's quantum computing framework.
- Score: 10.0076368843188
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement is a physical phenomenon, which has fueled recent successes of
quantum algorithms. Although quantum neural networks (QNNs) have shown
promising results in solving simple machine learning tasks recently, for the
time being, the effect of entanglement in QNNs and the behavior of QNNs in
binary pattern classification are still underexplored. In this work, we provide
some theoretical insight into the properties of QNNs by presenting and
analyzing a new form of invariance embedded in QNNs for both quantum binary
classification and quantum representation learning, which we term negational
symmetry. Given a quantum binary signal and its negational counterpart where a
bitwise NOT operation is applied to each quantum bit of the binary signal, a
QNN outputs the same logits. That is to say, QNNs cannot differentiate a
quantum binary signal and its negational counterpart in a binary classification
task. We further empirically evaluate the negational symmetry of QNNs in binary
pattern classification tasks using Google's quantum computing framework. The
theoretical and experimental results suggest that negational symmetry is a
fundamental property of QNNs, which is not shared by classical models. Our
findings also imply that negational symmetry is a double-edged sword in
practical quantum applications.
Related papers
- Resource-efficient equivariant quantum convolutional neural networks [0.0]
This study proposes a resource-efficient model of equivariant quantum convolutional neural networks (QCNNs) called equivariant split-parallelizing QCNN (sp-QCNN)
Using a group-theoretical approach, we encode general symmetries into our model beyond the translational symmetry addressed by previous sp-QCNNs.
Our results contribute to the advancement of practical quantum machine learning algorithms.
arXiv Detail & Related papers (2024-10-02T05:51:33Z) - QuanTest: Entanglement-Guided Testing of Quantum Neural Network Systems [45.18451374144537]
Quantum Neural Network (QNN) combines the Deep Learning (DL) principle with the fundamental theory of quantum mechanics to achieve machine learning tasks with quantum acceleration.
QNN systems differ significantly from traditional quantum software and classical DL systems, posing critical challenges for QNN testing.
We propose QuanTest, a quantum entanglement-guided adversarial testing framework to uncover potential erroneous behaviors in QNN systems.
arXiv Detail & Related papers (2024-02-20T12:11:28Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Theory for Equivariant Quantum Neural Networks [0.0]
We present a theoretical framework to design equivariant quantum neural networks (EQNNs) for essentially any relevant symmetry group.
Our framework can be readily applied to virtually all areas of quantum machine learning.
arXiv Detail & Related papers (2022-10-16T15:42:21Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
Quantum neural networks (QNNs) exert the power of modern quantum machines.
QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes.
We propose the effective quantum neural tangent kernel (EQNTK) to quantify the convergence of QNNs towards the global optima.
arXiv Detail & Related papers (2022-08-30T08:17:55Z) - Evaluating the performance of sigmoid quantum perceptrons in quantum
neural networks [0.0]
Quantum neural networks (QNN) have been proposed as a promising architecture for quantum machine learning.
One candidate is quantum perceptrons designed to emulate the nonlinear activation functions of classical perceptrons.
We critically investigate both the capabilities and performance of SQP networks by computing their effective dimension and effective capacity.
arXiv Detail & Related papers (2022-08-12T10:08:11Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.