Crosstalk analysis for single-qubit and two-qubit gates in spin qubit
arrays
- URL: http://arxiv.org/abs/2105.10221v2
- Date: Fri, 3 Sep 2021 11:47:21 GMT
- Title: Crosstalk analysis for single-qubit and two-qubit gates in spin qubit
arrays
- Authors: Irina Heinz, Guido Burkard
- Abstract summary: scaling up spin qubit systems requires high-fidelity single-qubit and two-qubit gates.
We analyze qubit fidelities impacted by crosstalk when performing single-qubit and two-qubit operations on neighbor qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scaling up spin qubit systems requires high-fidelity single-qubit and
two-qubit gates. Gate fidelities exceeding $98\%$ were already demonstrated in
silicon based single and double quantum dots, whereas for the realization of
larger qubit arrays crosstalk effects on neighboring qubits must be taken into
account. We analyze qubit fidelities impacted by crosstalk when performing
single-qubit and two-qubit operations on neighbor qubits with a simple
Heisenberg model. Furthermore we propose conditions for driving fields to
robustly synchronize Rabi oscillations and avoid crosstalk effects. In our
analysis we also consider next to nearest neighbor crosstalk and show that
double synchronization leads to a restricted choice for the driving field
strength, exchange interaction, and thus gate time. Considering realistic
experimental conditions we propose a set of parameter values to perform a
nearly crosstalk-free CNOT gate and so open up the pathway to scalable quantum
computing devices.
Related papers
- Native two-qubit gates in fixed-coupling, fixed-frequency transmons beyond cross-resonance interaction [1.0797934175846036]
Cross-resonance gates have been the workhorse of fixed-coupling, fixed-frequency superconducting processors.
Here, we use on-resonant and off-resonant microwave drives to go beyond cross-resonance.
We show native two-qubit gates are better than their counterparts compiled from cross-resonance gates.
arXiv Detail & Related papers (2023-10-18T17:57:04Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Two qubits in one transmon -- QEC without ancilla hardware [68.8204255655161]
We show that it is theoretically possible to use higher energy levels for storing and controlling two qubits within a superconducting transmon.
The additional qubits could be used in algorithms which need many short-living qubits in error correction or by embedding effecitve higher connectivity in qubit networks.
arXiv Detail & Related papers (2023-02-28T16:18:00Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Crosstalk analysis for simultaneously driven two-qubit gates in spin
qubit arrays [0.0]
Crosstalk errors are caused by control operations on neighboring qubits.
We analyse the impact of crosstalk drives on qubit operations, such as the CNOT and CPHASE gates.
To minimize crosstalk errors, we develop appropriate control protocols.
arXiv Detail & Related papers (2021-11-19T12:04:32Z) - Quantum crosstalk analysis for simultaneous gate operations on
superconducting qubits [12.776712619117092]
We study the impact of quantum crosstalk on simultaneous gate operations in a qubit architecture.
Our analysis shows that for microwave-driven single-qubit gates, the dressing from the qubit-qubit coupling can cause non-negligible cross-driving errors.
arXiv Detail & Related papers (2021-10-25T01:21:04Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Two-qubit sweet spots for capacitively coupled exchange-only spin qubits [0.0]
We study capacitive coupling between two triple quantum dot spin qubits encoded in the $S = 1/2$, $S_z = -1/2$ decoherence-free subspace -- the exchange-only (EO) spin qubits.
We report exact gate sequences for CPHASE and CNOT gates, and demonstrate theoretically, the existence of multiple two-qubit sweet spots (2QSS) in the parameter space of capacitively coupled EO qubits.
arXiv Detail & Related papers (2021-03-29T15:05:07Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Demonstration of an All-Microwave Controlled-Phase Gate between Far
Detuned Qubits [0.0]
We present an all-microwave controlled-phase gate between two transversely coupled transmon qubits.
Our gate constitutes a promising alternative to present two-qubit gates and could have hardware scaling advantages in large-scale quantum processors.
arXiv Detail & Related papers (2020-06-18T16:08:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.