論文の概要: Demotivate adversarial defense in remote sensing
- arxiv url: http://arxiv.org/abs/2105.13902v1
- Date: Fri, 28 May 2021 15:04:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-31 15:25:33.208430
- Title: Demotivate adversarial defense in remote sensing
- Title(参考訳): リモートセンシングにおける対人防御の実証
- Authors: Adrien Chan-Hon-Tong and Gaston Lenczner and Aurelien Plyer
- Abstract要約: 本研究は,この目的に対する対人防御として,対人訓練と対人正規化について検討する。
対角的堅牢性は地理的および過度に適合するロバスト性とは無関係と思われる公共のリモートセンシングデータセットについていくつかの実験を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural networks are currently the state-of-the-art algorithms
for many remote sensing applications such as semantic segmentation or object
detection. However, these algorithms are extremely sensitive to over-fitting,
domain change and adversarial examples specifically designed to fool them.
While adversarial attacks are not a threat in most remote sensing applications,
one could wonder if strengthening networks to adversarial attacks could also
increase their resilience to over-fitting and their ability to deal with the
inherent variety of worldwide data. In this work, we study both adversarial
retraining and adversarial regularization as adversarial defenses to this
purpose. However, we show through several experiments on public remote sensing
datasets that adversarial robustness seems uncorrelated to geographic and
over-fitting robustness.
- Abstract(参考訳): 畳み込みニューラルネットワークは現在、セマンティックセグメンテーションやオブジェクト検出など、多くのリモートセンシングアプリケーションで最先端のアルゴリズムである。
しかし、これらのアルゴリズムは、オーバーフィッティング、ドメインの変更、それらを騙すために特別に設計された敵の例に非常に敏感である。
敵の攻撃は、ほとんどのリモートセンシングアプリケーションでは脅威ではないが、敵の攻撃に対するネットワークの強化は、過度な適合に対する抵抗性と、固有の世界のデータを扱う能力を高めるかもしれない。
本研究は,この目的に対する対人防御として,対人訓練と対人正規化の両方について検討する。
しかし,公共リモートセンシングデータセットにおけるいくつかの実験を通して,敵意の強固さは地理的かつ過剰に適合する強固さとは無関係であることを示した。
関連論文リスト
- Detecting Adversarial Attacks in Semantic Segmentation via Uncertainty Estimation: A Deep Analysis [12.133306321357999]
セグメンテーションのためのニューラルネットワークに対する敵攻撃を検出する不確実性に基づく手法を提案する。
我々は,不確実性に基づく敵攻撃の検出と様々な最先端ニューラルネットワークの詳細な解析を行う。
提案手法の有効性を示す数値実験を行った。
論文 参考訳(メタデータ) (2024-08-19T14:13:30Z) - Towards Improving Robustness Against Common Corruptions in Object
Detectors Using Adversarial Contrastive Learning [10.27974860479791]
本稿では, ニューラルネットワークの強靭性向上と, 対人攻撃と共通汚職の同時防止を目的とした, 革新的な対人的コントラスト学習フレームワークを提案する。
対戦型および実世界の条件下での性能向上に焦点を合わせることで、安全クリティカルなアプリケーションにおけるニューラルネットワークの堅牢性を高めることを目的としている。
論文 参考訳(メタデータ) (2023-11-14T06:13:52Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
逆の例では、機械学習モデルを操作して誤った予測を行うことができます。
敵の例の転送可能性により、ターゲットモデルの詳細な知識を回避できるブラックボックス攻撃が可能となる。
本研究は, 対角移動可能性の展望を考察した。
論文 参考訳(メタデータ) (2023-10-26T17:45:26Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
我々の研究では、最大5つの攻撃アルゴリズムを3つのデータセットにわたって探索する。
対人摂動における人間の識別可能な特徴を同定する。
画素レベルのアノテーションを用いて、そのような特徴を抽出し、ターゲットモデルに妥協する能力を実証する。
論文 参考訳(メタデータ) (2023-09-28T22:31:29Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
敵の摂動に対するディープニューラルネットワークの脆弱性は、コンピュータビジョンコミュニティで広く認識されている。
現在のアルゴリズムは、通常、自然および敵対的なデータの識別的分解を通じて、敵のパターンを検出する。
空間周波数Krawtchouk分解に基づく識別検出器を提案する。
論文 参考訳(メタデータ) (2023-05-18T10:18:59Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - TREATED:Towards Universal Defense against Textual Adversarial Attacks [28.454310179377302]
本稿では,様々な摂動レベルの攻撃に対して,仮定なしに防御できる汎用的対向検出手法であるTREATEDを提案する。
3つの競合するニューラルネットワークと2つの広く使われているデータセットの大規模な実験により、本手法はベースラインよりも優れた検出性能が得られることが示された。
論文 参考訳(メタデータ) (2021-09-13T03:31:20Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
本稿では,最近導入された非破壊的特徴を動機とした新しい確率的対向検出器を提案する。
本稿では,非ロバスト特徴を逆例の共通性と考え,その性質に対応する表現空間におけるクラスターの探索が可能であることを推定する。
このアイデアは、別のクラスタ内の逆表現の確率推定分布を導出し、その分布を確率に基づく逆検出器として活用する。
論文 参考訳(メタデータ) (2020-12-07T07:21:18Z) - Robust Tracking against Adversarial Attacks [69.59717023941126]
まず,ビデオシーケンス上に敵の例を生成して,敵の攻撃に対するロバスト性を改善する。
提案手法を最先端のディープトラッキングアルゴリズムに適用する。
論文 参考訳(メタデータ) (2020-07-20T08:05:55Z) - Adversarial Feature Desensitization [12.401175943131268]
本稿では,ドメイン適応分野からの洞察を基盤とした,対向ロバスト性に対する新しいアプローチを提案する。
提案手法は,入力の逆方向の摂動に対して不変な特徴を学習することを目的として,AFD(Adversarial Feature Desensitization)と呼ばれる。
論文 参考訳(メタデータ) (2020-06-08T14:20:02Z) - RAID: Randomized Adversarial-Input Detection for Neural Networks [7.37305608518763]
本稿では,2次分類器を訓練し,良性入力と逆性入力のニューロン活性化値の違いを識別する,逆性画像検出のための新しい手法であるRAIDを提案する。
RAIDは、一般的な6つの攻撃に対して評価すると、最先端技術よりも信頼性が高く、効果的である。
論文 参考訳(メタデータ) (2020-02-07T13:27:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。