論文の概要: Towards Improving Robustness Against Common Corruptions in Object
Detectors Using Adversarial Contrastive Learning
- arxiv url: http://arxiv.org/abs/2311.07928v1
- Date: Tue, 14 Nov 2023 06:13:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 15:32:34.139140
- Title: Towards Improving Robustness Against Common Corruptions in Object
Detectors Using Adversarial Contrastive Learning
- Title(参考訳): 逆相関学習を用いた物体検出器の共通破壊に対するロバスト性向上に向けて
- Authors: Shashank Kotyan and Danilo Vasconcellos Vargas
- Abstract要約: 本稿では, ニューラルネットワークの強靭性向上と, 対人攻撃と共通汚職の同時防止を目的とした, 革新的な対人的コントラスト学習フレームワークを提案する。
対戦型および実世界の条件下での性能向上に焦点を合わせることで、安全クリティカルなアプリケーションにおけるニューラルネットワークの堅牢性を高めることを目的としている。
- 参考スコア(独自算出の注目度): 10.27974860479791
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks have revolutionized various domains, exhibiting remarkable
accuracy in tasks like natural language processing and computer vision.
However, their vulnerability to slight alterations in input samples poses
challenges, particularly in safety-critical applications like autonomous
driving. Current approaches, such as introducing distortions during training,
fall short in addressing unforeseen corruptions. This paper proposes an
innovative adversarial contrastive learning framework to enhance neural network
robustness simultaneously against adversarial attacks and common corruptions.
By generating instance-wise adversarial examples and optimizing contrastive
loss, our method fosters representations that resist adversarial perturbations
and remain robust in real-world scenarios. Subsequent contrastive learning then
strengthens the similarity between clean samples and their adversarial
counterparts, fostering representations resistant to both adversarial attacks
and common distortions. By focusing on improving performance under adversarial
and real-world conditions, our approach aims to bolster the robustness of
neural networks in safety-critical applications, such as autonomous vehicles
navigating unpredictable weather conditions. We anticipate that this framework
will contribute to advancing the reliability of neural networks in challenging
environments, facilitating their widespread adoption in mission-critical
scenarios.
- Abstract(参考訳): ニューラルネットワークは様々な領域に革命をもたらし、自然言語処理やコンピュータビジョンといったタスクにおいて顕著な精度を発揮している。
しかし、入力サンプルのわずかな変更に対する脆弱性は、特に自動運転のような安全クリティカルなアプリケーションにおいて問題となる。
トレーニング中に歪みを導入するといった現在のアプローチは、予期せぬ腐敗に対処するには不足している。
本稿では, ニューラルネットワークの強靭性向上と, 対人攻撃と共通汚職の同時防止を目的とした, 革新的な対人的コントラスト学習フレームワークを提案する。
インスタンス毎の逆行例を生成し、コントラスト損失を最適化することで、本手法は逆行の摂動に抵抗し、現実世界のシナリオにおいて頑健な表現を育成する。
その後のコントラスト学習はクリーンなサンプルとその敵の類似性を強化し、敵の攻撃と共通の歪みの両方に抵抗する表現を育む。
本研究の目的は,予測不可能な気象条件を走行する自動運転車など,安全上重要なアプリケーションにおけるニューラルネットワークの堅牢性を高めることである。
このフレームワークは、課題のある環境でのニューラルネットワークの信頼性向上に寄与し、ミッションクリティカルなシナリオで広く採用されることを期待しています。
関連論文リスト
- Enhancing Adversarial Robustness via Uncertainty-Aware Distributional Adversarial Training [43.766504246864045]
そこで本研究では,不確実性を考慮した分散対向学習手法を提案する。
提案手法は, 最先端の対向性を実現し, 自然性能を維持できる。
論文 参考訳(メタデータ) (2024-11-05T07:26:24Z) - Protecting Feed-Forward Networks from Adversarial Attacks Using Predictive Coding [0.20718016474717196]
逆の例は、機械学習(ML)モデルが誤りを犯すように設計された、修正された入力イメージである。
本研究では,敵防衛のための補助的なステップとして,予測符号化ネットワーク(PCnet)を用いた実用的で効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-10-31T21:38:05Z) - Few-Shot Adversarial Prompt Learning on Vision-Language Models [62.50622628004134]
知覚不能な逆境摂動に対するディープニューラルネットワークの脆弱性は、広く注目を集めている。
それまでの努力は、相手の視覚的特徴をテキストの監督と整合させることで、ゼロショットの敵の堅牢性を達成した。
本稿では、限られたデータで入力シーケンスを適応させることで、対向性を大幅に向上させる、数ショットの対向的プロンプトフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-21T18:28:43Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
逆の例では、機械学習モデルを操作して誤った予測を行うことができます。
敵の例の転送可能性により、ターゲットモデルの詳細な知識を回避できるブラックボックス攻撃が可能となる。
本研究は, 対角移動可能性の展望を考察した。
論文 参考訳(メタデータ) (2023-10-26T17:45:26Z) - Addressing Mistake Severity in Neural Networks with Semantic Knowledge [0.0]
ほとんどの堅牢なトレーニング技術は、摂動入力のモデル精度を改善することを目的としている。
強靭性の代替形態として、ニューラルネットワークが挑戦的な状況で犯した誤りの深刻度を低減することを目的としている。
我々は、現在の対人訓練手法を活用して、トレーニングプロセス中に標的の対人攻撃を発生させる。
その結果,本手法は,標準モデルや逆トレーニングモデルと比較して,誤り重大性に対して優れた性能を示した。
論文 参考訳(メタデータ) (2022-11-21T22:01:36Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Demotivate adversarial defense in remote sensing [0.0]
本研究は,この目的に対する対人防御として,対人訓練と対人正規化について検討する。
対角的堅牢性は地理的および過度に適合するロバスト性とは無関係と思われる公共のリモートセンシングデータセットについていくつかの実験を行った。
論文 参考訳(メタデータ) (2021-05-28T15:04:37Z) - Combating Adversaries with Anti-Adversaries [118.70141983415445]
特に、我々の層は、逆の層とは反対の方向に入力摂動を生成します。
我々は,我々の階層と名目および頑健に訓練されたモデルを組み合わせることで,我々のアプローチの有効性を検証する。
我々の対向層は、クリーンな精度でコストを伴わずにモデルロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2021-03-26T09:36:59Z) - Improving Adversarial Robustness by Enforcing Local and Global
Compactness [19.8818435601131]
敵の訓練は、広範囲の攻撃に一貫して抵抗する最も成功した方法である。
本稿では,局所的・言語的コンパクト性とクラスタリングの仮定を強制する分散分散化ネットワークを提案する。
実験の結果,提案するコンポーネントによる対人訓練の強化は,ネットワークの堅牢性をさらに向上させる可能性が示唆された。
論文 参考訳(メタデータ) (2020-07-10T00:43:06Z) - Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness [97.67477497115163]
我々は、モード接続を用いて、ディープニューラルネットワークの対角的堅牢性を研究する。
実験では、異なるネットワークアーキテクチャやデータセットに適用される様々な種類の敵攻撃について取り上げる。
以上の結果から,モード接続は,敵の強靭性を評価・改善するための総合的なツールであり,実用的な手段であることが示唆された。
論文 参考訳(メタデータ) (2020-04-30T19:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。