SSMD: Semi-Supervised Medical Image Detection with Adaptive Consistency
and Heterogeneous Perturbation
- URL: http://arxiv.org/abs/2106.01544v1
- Date: Thu, 3 Jun 2021 01:59:50 GMT
- Title: SSMD: Semi-Supervised Medical Image Detection with Adaptive Consistency
and Heterogeneous Perturbation
- Authors: Hong-Yu Zhou, Chengdi Wang, Haofeng Li, Gang Wang, Shu Zhang, Weimin
Li, Yizhou Yu
- Abstract summary: We propose a novel Semi-Supervised Medical image Detector (SSMD)
The motivation behind SSMD is to provide free yet effective supervision for unlabeled data, by regularizing the predictions at each position to be consistent.
Extensive experimental results show that the proposed SSMD achieves the state-of-the-art performance at a wide range of settings.
- Score: 47.001609080453335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-Supervised classification and segmentation methods have been widely
investigated in medical image analysis. Both approaches can improve the
performance of fully-supervised methods with additional unlabeled data.
However, as a fundamental task, semi-supervised object detection has not gained
enough attention in the field of medical image analysis. In this paper, we
propose a novel Semi-Supervised Medical image Detector (SSMD). The motivation
behind SSMD is to provide free yet effective supervision for unlabeled data, by
regularizing the predictions at each position to be consistent. To achieve the
above idea, we develop a novel adaptive consistency cost function to regularize
different components in the predictions. Moreover, we introduce heterogeneous
perturbation strategies that work in both feature space and image space, so
that the proposed detector is promising to produce powerful image
representations and robust predictions. Extensive experimental results show
that the proposed SSMD achieves the state-of-the-art performance at a wide
range of settings. We also demonstrate the strength of each proposed module
with comprehensive ablation studies.
Related papers
- Discrepancy-based Diffusion Models for Lesion Detection in Brain MRI [1.8420387715849447]
Diffusion probabilistic models (DPMs) have exhibited significant effectiveness in computer vision tasks.
Their notable performance heavily relies on labelled datasets, which limits their application in medical images.
This paper introduces a novel framework by incorporating distinctive discrepancy features.
arXiv Detail & Related papers (2024-05-08T11:26:49Z) - OPTiML: Dense Semantic Invariance Using Optimal Transport for Self-Supervised Medical Image Representation [6.4136876268620115]
Self-supervised learning (SSL) has emerged as a promising technique for medical image analysis due to its ability to learn without annotations.
We introduce a novel SSL framework OPTiML, employing optimal transport (OT), to capture the dense semantic invariance and fine-grained details.
Our empirical results reveal OPTiML's superiority over state-of-the-art methods across all evaluated tasks.
arXiv Detail & Related papers (2024-04-18T02:59:48Z) - Leveraging Semi-Supervised Graph Learning for Enhanced Diabetic
Retinopathy Detection [0.0]
Diabetic Retinopathy (DR) is a significant cause of blindness globally, highlighting the urgent need for early detection and effective treatment.
Recent advancements in Machine Learning (ML) techniques have shown promise in DR detection, but the availability of labeled data often limits their performance.
This research proposes a novel Semi-Supervised Graph Learning SSGL algorithm tailored for DR detection.
arXiv Detail & Related papers (2023-09-02T04:42:08Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Toward Robust Diagnosis: A Contour Attention Preserving Adversarial
Defense for COVID-19 Detection [10.953610196636784]
We propose a Contour Attention Preserving (CAP) method based on lung cavity edge extraction.
Experimental results indicate that the proposed method achieves state-of-the-art performance in multiple adversarial defense and generalization tasks.
arXiv Detail & Related papers (2022-11-30T08:01:23Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - A Macro-Micro Weakly-supervised Framework for AS-OCT Tissue Segmentation [33.684182783291064]
Primary angle closure glaucoma (PACG) is the leading cause of irreversible blindness among Asian people.
The proposed framework consists of two models which provide reliable guidance for each other.
Experiments on the publicly available AGE dataset demonstrate that the proposed framework outperforms the state-of-the-art semi-/weakly-supervised methods.
arXiv Detail & Related papers (2020-07-20T11:26:32Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.