Hong-Ou-Mandel interference of two independent continuous-wave coherent
photons
- URL: http://arxiv.org/abs/2106.02427v1
- Date: Fri, 4 Jun 2021 12:07:56 GMT
- Title: Hong-Ou-Mandel interference of two independent continuous-wave coherent
photons
- Authors: Heonoh Kin, Danbi Kim, Jiho Park, Han Seb Moon
- Abstract summary: Hong-Ou-Mandel (HOM) interference with two independent continuous-wave coherent light sources are observed.
To prepare highly indistinguishable photons from two independent laser sources, we employ high-precision frequency-stabilization techniques.
An interference fringe involving two-photon beating is also observed when the frequency difference between the two interfering photons is beyond the spectral bandwidth of the individual coherent photons.
- Score: 0.23704813250344428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interference between two completely independent photons lies at the heart of
many photonic quantum information applications such as quantum repeaters,
teleportation, and quantum key distribution. Here, we report the observation of
Hong-Ou-Mandel (HOM) interference with two independent continuous-wave coherent
light sources that are neither synchronized nor share any common reference. To
prepare highly indistinguishable photons from two independent laser sources, we
employ high-precision frequency-stabilization techniques using the
5S1/2(F=3)-5P1/2(F'=3) transition line of 85Rb atoms. We successfully observe a
HOM interference fringe with two independent continuous-wave coherent photons
originating from either the frequency-locked and frequency-modulated lasers. An
interference fringe involving two-photon beating is also observed when the
frequency difference between the two interfering photons is beyond the spectral
bandwidth of the individual coherent photons. We carry out further experiments
to verify the robustness of the source preparation regardless of the separation
distance between the two independent photon sources.
Related papers
- Phase-Subtractive Interference and Noise-Resistant Quantum Imaging with Two Undetected Photons [0.0]
We present a quantum interference phenomenon in which four-photon quantum states generated by two independent sources are used to create a two-photon interference pattern.
Contrary to the common perception, the interference pattern can be made fully independent of phases acquired by the photons detected to construct it.
arXiv Detail & Related papers (2024-06-09T05:36:17Z) - Observation of the First-Order Interference Fringes Beyond Coherence
Length Employing Commercial Continuous-wave Multi-mode Laser Diode: A Sight
of Two-photon Interference [3.5516371712310306]
We report an experiment of observation of classical double-slit interference fringes of two-photon interference.
The temporal stable and clearly visible spatial-distributed pattern, i.e. first-order interference fringes, was observed.
We reveal a new method to perform two-photon first-order interference, and this help to understand the nature of two-photon interference.
arXiv Detail & Related papers (2024-02-23T01:28:20Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - Two-photon pulse scattering spectroscopy for arrays of two-level atoms,
coupled to the waveguide [125.99533416395765]
We have theoretically studied the scattering of two-photon pulses from a spatially-separated array of two-level atoms coupled to a waveguide.
The contributions of various single-eigenstate and double-excited eigenstates of the array have been analyzed.
arXiv Detail & Related papers (2023-02-27T22:05:07Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Tailoring photon statistics with an atom-based two-photon interferometer [0.0]
We actively control the quantum phase between the transmitted and incoherently scattered two-photon component.
We observe interference fringes in the normalized photon coincidence rate, varying from antibunching to bunching.
Our results lend themselves to the development of novel quantum light sources.
arXiv Detail & Related papers (2022-12-19T16:24:54Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Tunable quantum interference using a topological source of
indistinguishable photon pairs [0.0]
We demonstrate the use of a two-dimensional array of ring resonators to generate indistinguishable photon pairs.
We show that the linear dispersion of the edge states over a broad bandwidth allows us to tune the correlations.
Our results pave the way for scalable and tunable sources of squeezed light.
arXiv Detail & Related papers (2020-06-04T18:11:30Z) - Quantum-Clustered Two-Photon Walks [68.8204255655161]
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk.
Two identical bosons with no mutual interactions can remain clustered together.
The two photons move in the same direction at each step due to a two-photon quantum interference phenomenon.
arXiv Detail & Related papers (2020-03-12T17:02:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.