論文の概要: Defending Democracy: Using Deep Learning to Identify and Prevent
Misinformation
- arxiv url: http://arxiv.org/abs/2106.02607v1
- Date: Thu, 3 Jun 2021 16:34:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 15:43:49.644237
- Title: Defending Democracy: Using Deep Learning to Identify and Prevent
Misinformation
- Title(参考訳): 民主主義を守る: 深層学習を使って誤情報を特定し予防する
- Authors: Anusua Trivedi, Alyssa Suhm, Prathamesh Mahankal, Subhiksha
Mukuntharaj, Meghana D. Parab, Malvika Mohan, Meredith Berger, Arathi
Sethumadhavan, Ashish Jaiman, Rahul Dodhia
- Abstract要約: 本研究では、公開Twitterデータを用いて、ソーシャルメディア上での誤情報拡散の分類と可視化を行う。
この研究は、偽情報検出のためのスケーラブルなモデルを提供するためのBERTの適合性をさらに示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise in online misinformation in recent years threatens democracies by
distorting authentic public discourse and causing confusion, fear, and even, in
extreme cases, violence. There is a need to understand the spread of false
content through online networks for developing interventions that disrupt
misinformation before it achieves virality. Using a Deep Bidirectional
Transformer for Language Understanding (BERT) and propagation graphs, this
study classifies and visualizes the spread of misinformation on a social media
network using publicly available Twitter data. The results confirm prior
research around user clusters and the virality of false content while improving
the precision of deep learning models for misinformation detection. The study
further demonstrates the suitability of BERT for providing a scalable model for
false information detection, which can contribute to the development of more
timely and accurate interventions to slow the spread of misinformation in
online environments.
- Abstract(参考訳): 近年のオンライン偽情報の増加は、真正の世論を歪め、混乱、恐怖、さらには極端な場合の暴力を引き起こすことで民主主義を脅かす。
虚偽情報の拡散をネットネットワークを通じて理解し、ウイルスに感染する前に偽情報を妨害する介入を開発する必要がある。
本研究では,言語理解のためのディープ双方向トランスフォーマー(BERT)と伝搬グラフを用いて,ソーシャルメディア上での誤情報拡散の分類と可視化を行う。
その結果,誤情報検出のための深層学習モデルの精度を改善しつつ,ユーザクラスタと偽コンテンツのバイラル性に関する先行研究を確認した。
この研究はさらに、偽情報検出のためのスケーラブルなモデルを提供するためのbertの適合性を示し、オンライン環境における誤情報の拡散を遅くする、よりタイムリーで正確な介入の開発に寄与する。
関連論文リスト
- Epidemiology-informed Network for Robust Rumor Detection [59.89351792706995]
本稿では, 疫学知識を統合し, 性能を高めるための新しい疫学情報ネットワーク(EIN)を提案する。
疫学理論をうわさ検出に適応させるため,各利用者が情報源情報に対する姿勢を付加することが期待されている。
実験結果から,提案したEINは実世界のデータセット上で最先端の手法より優れるだけでなく,樹木の深度にまたがる堅牢性も向上することが示された。
論文 参考訳(メタデータ) (2024-11-20T00:43:32Z) - MisinfoEval: Generative AI in the Era of "Alternative Facts" [50.069577397751175]
本稿では,大規模言語モデル(LLM)に基づく誤情報介入の生成と評価を行うフレームワークを提案する。
本研究では,(1)誤情報介入の効果を測定するための模擬ソーシャルメディア環境の実験,(2)ユーザの人口動態や信念に合わせたパーソナライズされた説明を用いた第2の実験について述べる。
以上の結果から,LSMによる介入はユーザの行動の修正に極めて有効であることが確認された。
論文 参考訳(メタデータ) (2024-10-13T18:16:50Z) - AMMeBa: A Large-Scale Survey and Dataset of Media-Based Misinformation In-The-Wild [1.4193873432298625]
オンラインメディアをベースとした誤情報に注釈を付けるために,ヒトラプターを用いた2年間の研究結果を示す。
偽情報クレームにおける生成AIベースのコンテンツの増加を示す。
また、歴史的に支配的な「単純な」手法、特に文脈操作を示す。
論文 参考訳(メタデータ) (2024-05-19T23:05:53Z) - Harnessing the Power of Text-image Contrastive Models for Automatic
Detection of Online Misinformation [50.46219766161111]
誤情報識別の領域における構成的学習を探求する自己学習モデルを構築した。
本モデルでは、トレーニングデータが不十分な場合、非マッチング画像-テキストペア検出の優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-19T02:53:59Z) - Adherence to Misinformation on Social Media Through Socio-Cognitive and
Group-Based Processes [79.79659145328856]
誤報が広まると、これはソーシャルメディア環境が誤報の付着を可能にするためである、と我々は主張する。
偏光と誤情報付着が密接な関係にあると仮定する。
論文 参考訳(メタデータ) (2022-06-30T12:34:24Z) - Rumor Detection with Self-supervised Learning on Texts and Social Graph [101.94546286960642]
異種情報ソース上での自己教師型学習を対照的に提案し,それらの関係を明らかにするとともに,噂をよりよく特徴付ける。
我々はこの枠組みをSRD(Self-supervised Rumor Detection)と呼ぶ。
3つの実世界のデータセットに対する大規模な実験により、ソーシャルメディア上での噂の自動検出におけるSRDの有効性が検証された。
論文 参考訳(メタデータ) (2022-04-19T12:10:03Z) - Misinformation Detection in Social Media Video Posts [0.4724825031148411]
ソーシャルメディアプラットフォームによるショートフォームビデオは、ソーシャルメディアプロバイダーにとって重要な課題となっている。
本研究では,ソーシャルメディア投稿における誤情報検出手法を開発し,ビデオやテキストなどのモダリティを活用する。
われわれはTwitterから16万の動画投稿を収集し、自己教師付き学習を活用して、共同視覚およびテキストデータの表現表現を学ぶ。
論文 参考訳(メタデータ) (2022-02-15T20:14:54Z) - SOK: Fake News Outbreak 2021: Can We Stop the Viral Spread? [5.64512235559998]
ソーシャルネットワークの完全解釈と使いやすさは、今日の世界での情報の生成と配布に革命をもたらした。
従来のメディアチャンネルとは異なり、ソーシャルネットワークは偽情報や偽情報の拡散を迅速かつ広範囲に促進する。
虚偽情報の拡散は、大衆の行動、態度、信念に深刻な影響を及ぼす。
論文 参考訳(メタデータ) (2021-05-22T09:26:13Z) - Understanding Health Misinformation Transmission: An Interpretable Deep
Learning Approach to Manage Infodemics [6.08461198240039]
本研究では,新しい解釈可能な深層学習手法であるGenerative Adversarial NetworkベースのPiecewise Wide and Attention Deep Learning (GAN-PiWAD)を提案する。
社会交換理論に則った特徴を選択し、4,445本の誤報動画でGAN-PiWADを評価します。
本研究は,ソーシャルメディアプラットフォームや政策立案者に対して,誤情報を識別し,伝達を制御し,インフォデミクスを管理するための積極的な介入をデザインする直接的意義を与える。
論文 参考訳(メタデータ) (2020-12-21T15:49:19Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z) - An Information Diffusion Approach to Rumor Propagation and
Identification on Twitter [0.0]
われわれは,Twitter上での顕微鏡レベルの誤情報拡散のダイナミクスについて検討した。
われわれの調査によると、噂のカスケードはより深く流れ、その噂はニュースとして隠され、恐怖を喚起するメッセージは他のメッセージよりも急速に拡散する。
論文 参考訳(メタデータ) (2020-02-24T20:04:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。