EMFlow: Data Imputation in Latent Space via EM and Deep Flow Models
- URL: http://arxiv.org/abs/2106.04804v1
- Date: Wed, 9 Jun 2021 04:35:56 GMT
- Title: EMFlow: Data Imputation in Latent Space via EM and Deep Flow Models
- Authors: Qi Ma and Sujit K. Ghosh
- Abstract summary: We introduce an imputation approach, called EMFlow, that performs imputation in a latent space via an online version of Expectation-Maximization algorithm.
The proposed EMFlow has superior performance to competing methods in terms of both imputation quality and convergence speed.
- Score: 5.076419064097734
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: High dimensional incomplete data can be found in a wide range of systems. Due
to the fact that most of the data mining techniques and machine learning
algorithms require complete observations, data imputation is vital for
down-stream analysis. In this work, we introduce an imputation approach, called
EMFlow, that performs imputation in an latent space via an online version of
Expectation-Maximization (EM) algorithm and connects the latent space and the
data space via the normalizing flow (NF). The inference of EMFlow is iterative,
involving updating the parameters of online EM and NF alternatively. Extensive
experimental results on multivariate and image datasets show that the proposed
EMFlow has superior performance to competing methods in terms of both
imputation quality and convergence speed.
Related papers
- RecFlow: An Industrial Full Flow Recommendation Dataset [66.06445386541122]
Industrial recommendation systems rely on the multi-stage pipeline to balance effectiveness and efficiency when delivering items to users.
We introduce RecFlow, an industrial full flow recommendation dataset designed to bridge the gap between offline RS benchmarks and the real online environment.
Our dataset comprises 38M interactions from 42K users across nearly 9M items with additional 1.9B stage samples collected from 9.3M online requests over 37 days and spanning 6 stages.
arXiv Detail & Related papers (2024-10-28T09:36:03Z) - Physically Guided Deep Unsupervised Inversion for 1D Magnetotelluric Models [16.91835461818938]
We present a new deep inversion algorithm guided by physics to estimate 1D Magnetotelluric (MT) models.
Our method employs a differentiable modeling operator that physically guides the cost function minimization.
We test the proposed method with field and synthetic data at different frequencies, demonstrating that the acquisition models are more accurate than other results.
arXiv Detail & Related papers (2024-10-20T04:17:59Z) - DCP: Learning Accelerator Dataflow for Neural Network via Propagation [52.06154296196845]
This work proposes an efficient data-centric approach, named Dataflow Code Propagation (DCP), to automatically find the optimal dataflow for DNN layers in seconds without human effort.
DCP learns a neural predictor to efficiently update the dataflow codes towards the desired gradient directions to minimize various optimization objectives.
For example, without using additional training data, DCP surpasses the GAMMA method that performs a full search using thousands of samples.
arXiv Detail & Related papers (2024-10-09T05:16:44Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - Inpainting Computational Fluid Dynamics with Deep Learning [8.397730500554047]
An effective fluid data completion method reduces the required number of sensors in a fluid dynamics experiment.
The ill-posed nature of the fluid data completion problem makes it prohibitively difficult to obtain a theoretical solution.
We employ the vector quantization technique to map both complete and incomplete fluid data spaces onto discrete-valued lower-dimensional representations.
arXiv Detail & Related papers (2024-02-27T03:44:55Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
This paper proposes a Feature-Enhanced Neural Implicit Representation (FFEINR) for super-resolution of flow field data.
It can take full advantage of the implicit neural representation in terms of model structure and sampling resolution.
The training process of FFEINR is facilitated by introducing feature enhancements for the input layer.
arXiv Detail & Related papers (2023-08-24T02:28:18Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Physics-informed deep-learning applications to experimental fluid
mechanics [2.992602379681373]
High-resolution reconstruction of flow-field data from low-resolution and noisy measurements is of interest in experimental fluid mechanics.
Deep-learning approaches have been shown suitable for such super-resolution tasks.
In this study, we apply physics-informed neural networks (PINNs) for super-resolution of flow-field data in time and space.
arXiv Detail & Related papers (2022-03-29T09:58:30Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.