論文の概要: Exploiting Learned Symmetries in Group Equivariant Convolutions
- arxiv url: http://arxiv.org/abs/2106.04914v1
- Date: Wed, 9 Jun 2021 08:50:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-10 15:10:46.395628
- Title: Exploiting Learned Symmetries in Group Equivariant Convolutions
- Title(参考訳): 群同変畳み込みにおける学習対称性の爆発
- Authors: Attila Lengyel, Jan C. van Gemert
- Abstract要約: 群同変畳み込み(GConvs)は、畳み込みニューラルネットワークを様々な変換群に同変させることができる。
我々は,GConvsを深層的に分離可能な畳み込みに効率的に分解できることを示す。
- 参考スコア(独自算出の注目度): 20.63056707649319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Group Equivariant Convolutions (GConvs) enable convolutional neural networks
to be equivariant to various transformation groups, but at an additional
parameter and compute cost. We investigate the filter parameters learned by
GConvs and find certain conditions under which they become highly redundant. We
show that GConvs can be efficiently decomposed into depthwise separable
convolutions while preserving equivariance properties and demonstrate improved
performance and data efficiency on two datasets. All code is publicly available
at github.com/Attila94/SepGrouPy.
- Abstract(参考訳): 群同変畳み込み(gconvs)は、畳み込みニューラルネットワークを様々な変換群に同変させることができるが、追加のパラメータと計算コストで実現できる。
本稿では,gconvsが学習したフィルタパラメータを調査し,その条件が高度に冗長になることを示す。
GConvsは, 等分散性を保ちながら, 奥行き分離可能な畳み込みに効率的に分解でき, 2つのデータセットの性能とデータ効率が向上することを示す。
すべてのコードはgithub.com/Attila94/SepGrouPyで公開されている。
関連論文リスト
- LDConv: Linear deformable convolution for improving convolutional neural networks [18.814748446649627]
Linear Deformable Convolution (LDConv) は、ネットワーク性能を改善するために畳み込み操作を置き換えることができる、プラグアンドプレイの畳み込み操作である。
LDConvは、標準畳み込みと変形可能なConvのパラメータ数の成長傾向を線形成長に補正する。
論文 参考訳(メタデータ) (2023-11-20T07:54:54Z) - Accelerated Discovery of Machine-Learned Symmetries: Deriving the
Exceptional Lie Groups G2, F4 and E6 [55.41644538483948]
このレターでは、対称性変換の発見を著しく高速化する2つの改良されたアルゴリズムを紹介している。
例外的リー群の複雑性を考えると,この機械学習手法は完全に汎用的であり,多種多様なラベル付きデータセットに適用可能であることを示す。
論文 参考訳(メタデータ) (2023-07-10T20:25:44Z) - Deep Neural Networks with Efficient Guaranteed Invariances [77.99182201815763]
我々は、性能改善の問題、特にディープニューラルネットワークのサンプル複雑性に対処する。
群同変畳み込みは同変表現を得るための一般的なアプローチである。
本稿では,各ストリームが異なる変換に不変なマルチストリームアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-03-02T20:44:45Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
変換によるクラス内分散に関する事前知識を活用することは、ディープニューラルネットワークのサンプル複雑性を改善するための強力な方法である。
そこで本研究では,アプリケーションの複雑な問題に対処するために,プルーニング法に基づく新しい単項選択アルゴリズムを提案する。
本稿では,Rotated-MNIST,SVHN,CIFAR-10データセットにおけるサンプルの複雑さの改善について述べる。
論文 参考訳(メタデータ) (2022-02-08T16:16:11Z) - OneDConv: Generalized Convolution For Transform-Invariant Representation [76.15687106423859]
一般化された一次元畳み込み作用素(OneDConv)を提案する。
計算的かつパラメトリック的に効率的な方法で入力特徴に基づいて、畳み込みカーネルを動的に変換する。
一般的な画像のパフォーマンスを犠牲にすることなく、畳み込みの堅牢性と一般化を改善する。
論文 参考訳(メタデータ) (2022-01-15T07:44:44Z) - Exploiting Redundancy: Separable Group Convolutional Networks on Lie
Groups [14.029933823101084]
群畳み込みニューラルネットワーク(G-CNN)はパラメータ効率とモデルの精度を向上させることが示されている。
本研究では,正規G-CNNによって学習された表現の性質について検討し,グループ畳み込みカーネルにおけるパラメータ冗長性を示す。
部分群とチャネル次元で分離可能な畳み込みカーネルを導入する。
論文 参考訳(メタデータ) (2021-10-25T15:56:53Z) - Group Equivariant Subsampling [60.53371517247382]
サブサンプリングは、プールやストライド畳み込みの形で畳み込みニューラルネットワーク(CNN)で使用される。
まず、正確な翻訳同変CNNを構築するために使用できる翻訳同変サブサンプリング/アップサンプリング層を導入する。
次に、これらの層を一般群への変換を超えて一般化し、したがって群同変部分サンプリング/アップサンプリングを提案する。
論文 参考訳(メタデータ) (2021-06-10T16:14:00Z) - Symmetry-driven graph neural networks [1.713291434132985]
ノード座標に影響を及ぼすいくつかの変換に同値なグラフネットワークアーキテクチャを2つ導入する。
我々はこれらの機能を$n$次元の幾何学的オブジェクトからなる合成データセット上で実証する。
論文 参考訳(メタデータ) (2021-05-28T18:54:12Z) - Group Equivariant Conditional Neural Processes [30.134634059773703]
群同変条件ニューラルプロセス(EquivCNP)を提案する。
EquivCNPは1次元回帰タスクにおいて従来の条件付きニューラルプロセスに匹敵する性能を示す。
論文 参考訳(メタデータ) (2021-02-17T13:50:07Z) - PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions [71.60219086238254]
我々は、畳み込みと偏微分作用素(PDO)の接続から問題に対処する。
実装において、ほぼ同変の畳み込み(PDO-eConvs)を導出し、PDOの数値スキームを用いてシステムを識別する。
回転したMNISTと自然画像分類の実験により、PDO-eConvsは競合的に機能するが、より効率的にパラメータを使用することが示された。
論文 参考訳(メタデータ) (2020-07-20T18:57:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。