論文の概要: Relaxed Rotational Equivariance via $G$-Biases in Vision
- arxiv url: http://arxiv.org/abs/2408.12454v3
- Date: Tue, 14 Jan 2025 15:35:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:26:54.418015
- Title: Relaxed Rotational Equivariance via $G$-Biases in Vision
- Title(参考訳): 視覚におけるG$-Biasesによる緩和回転等価性
- Authors: Zhiqiang Wu, Yingjie Liu, Licheng Sun, Jian Yang, Hanlin Dong, Shing-Ho J. Lin, Xuan Tang, Jinpeng Mi, Bo Jin, Xian Wei,
- Abstract要約: 群同変畳み込み(GConv)は、元のデータから回転同値を取ることができる。
しかし、実世界のデータの提示や分布は、しばしば厳密な回転同値に適合する。
本稿では,G$-Biasesと呼ばれる学習可能なバイアスの集合を利用して,この問題に対処する,単純かつ高効率な手法を提案する。
実験により,提案手法は既存のGConv法と比較して,2次元オブジェクト検出タスクと分類作業の両方において優れた性能を発揮することが示された。
- 参考スコア(独自算出の注目度): 19.814324876189772
- License:
- Abstract: Group Equivariant Convolution (GConv) can capture rotational equivariance from original data. It assumes uniform and strict rotational equivariance across all features as the transformations under the specific group. However, the presentation or distribution of real-world data rarely conforms to strict rotational equivariance, commonly referred to as Rotational Symmetry-Breaking (RSB) in the system or dataset, making GConv unable to adapt effectively to this phenomenon. Motivated by this, we propose a simple but highly effective method to address this problem, which utilizes a set of learnable biases called $G$-Biases under the group order to break strict group constraints and then achieve a Relaxed Rotational Equivariant Convolution (RREConv). To validate the efficiency of RREConv, we conduct extensive ablation experiments on the discrete rotational group $\mathcal{C}_n$. Experiments demonstrate that the proposed RREConv-based methods achieve excellent performance compared to existing GConv-based methods in both classification and 2D object detection tasks on the natural image datasets.
- Abstract(参考訳): 群同変畳み込み(GConv)は、元のデータから回転同値を取ることができる。
それはすべての特徴に対して一様かつ厳密な回転同値を、特定の群の下での変換として仮定する。
しかし、実世界のデータの提示や分布は、システムやデータセットにおける厳密な回転同値(Rotational Symmetry-Breaking (RSB))に適合することは滅多になく、GConvはこの現象に効果的に適応できない。
そこで本研究では,厳密な群制約を破り,RREConv(Relaxed Rotational Equivariant Convolution)を実現するために,G$-Biasesと呼ばれる学習可能なバイアスの集合を利用する,単純かつ高効率な手法を提案する。
RREConvの効率性を検証するために、離散回転群 $\mathcal{C}_n$ 上で広範囲にわたるアブレーション実験を行う。
実験により,RREConvに基づく提案手法は,自然画像データセット上の2次元オブジェクト検出タスクと分類作業の両方において,既存のGConvベースの手法と比較して優れた性能を発揮することが示された。
関連論文リスト
- Harmformer: Harmonic Networks Meet Transformers for Continuous Roto-Translation Equivariance [2.5864824580604515]
CNNは画像翻訳と本質的に同値であり、効率的なパラメータとデータ利用、学習の高速化、堅牢性の向上につながっている。
変換同変ネットワークの概念は、離散回転群に対する群畳み込みと360円の連続回転群に対する調和関数を用いて回転変換に拡張された。
本稿では, コンボリューションステムを持つ調和変換器であるHarmformerを紹介し, 変換と連続回転の両面で等価性を実現する。
論文 参考訳(メタデータ) (2024-11-06T09:39:25Z) - SBDet: A Symmetry-Breaking Object Detector via Relaxed Rotation-Equivariance [26.05910177212846]
Group Equivariant Convolution(GConv)は、モデルに視覚データに隠された対称性を探索させ、パフォーマンスを向上させる。
従来のGConv法は群空間の厳密な操作規則によって制限されており、対称性・ブレーキングや非剛体変換への適応が困難である。
本稿では,Relaxed Rotation-Equivariant Network(R2Net)をバックボーンとして提案し,その上に構築された2次元オブジェクト検出のためのSBDet(Symmetry-Breaking Object Detector)を開発した。
論文 参考訳(メタデータ) (2024-08-21T16:32:03Z) - Equivariant Disentangled Transformation for Domain Generalization under
Combination Shift [91.38796390449504]
ドメインとラベルの組み合わせは、トレーニング中に観察されるのではなく、テスト環境に現れる。
我々は、同型の概念、同値性、および整合性の定義に基づく結合シフト問題の一意的な定式化を提供する。
論文 参考訳(メタデータ) (2022-08-03T12:31:31Z) - Orthonormal Convolutions for the Rotation Based Iterative
Gaussianization [64.44661342486434]
本稿では、画像ガウス化を可能にする回転型反復ガウス化RBIGの拡張について詳述する。
RBIGの回転は主成分分析や独立成分分析に基づくため、画像では小さな画像パッチや孤立画素に制限されている。
emphConvolutional RBIG:この問題を緩和する拡張として,RBIGの回転が畳み込みであることを示す。
論文 参考訳(メタデータ) (2022-06-08T12:56:34Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
変換によるクラス内分散に関する事前知識を活用することは、ディープニューラルネットワークのサンプル複雑性を改善するための強力な方法である。
そこで本研究では,アプリケーションの複雑な問題に対処するために,プルーニング法に基づく新しい単項選択アルゴリズムを提案する。
本稿では,Rotated-MNIST,SVHN,CIFAR-10データセットにおけるサンプルの複雑さの改善について述べる。
論文 参考訳(メタデータ) (2022-02-08T16:16:11Z) - Deformation Robust Roto-Scale-Translation Equivariant CNNs [10.44236628142169]
グループ同変畳み込みニューラルネットワーク(G-CNN)は,固有対称性を持つ一般化性能を著しく向上させる。
G-CNNの一般的な理論と実践的実装は、回転またはスケーリング変換の下での平面画像に対して研究されている。
論文 参考訳(メタデータ) (2021-11-22T03:58:24Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
我々は、最小限の統計量という情報理論の概念を用いて、ロバストで刺激的な表現を定義し、分析する。
入力分布のバイアスしか持たない場合でも、モデルはトレーニングデータから急激な特徴を拾い上げることができることを証明しています。
分析から着想を得た結果,グループDROは,グループ同士の相関関係を直接考慮しない場合に失敗する可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-14T05:39:09Z) - Exploiting Learned Symmetries in Group Equivariant Convolutions [20.63056707649319]
群同変畳み込み(GConvs)は、畳み込みニューラルネットワークを様々な変換群に同変させることができる。
我々は,GConvsを深層的に分離可能な畳み込みに効率的に分解できることを示す。
論文 参考訳(メタデータ) (2021-06-09T08:50:22Z) - GroupifyVAE: from Group-based Definition to VAE-based Unsupervised
Representation Disentanglement [91.9003001845855]
他の誘導バイアスを導入しないと、VAEベースの非監視的非絡み合いは実現できない。
グループ理論に基づく定義から導かれる制約を非確率的帰納的バイアスとして活用し,vaeに基づく教師なし不連続に対処する。
提案手法の有効性を検証するために,5つのデータセット上で,vaeベースモデルが最も目立つ1800モデルをトレーニングした。
論文 参考訳(メタデータ) (2021-02-20T09:49:51Z) - Group Equivariant Conditional Neural Processes [30.134634059773703]
群同変条件ニューラルプロセス(EquivCNP)を提案する。
EquivCNPは1次元回帰タスクにおいて従来の条件付きニューラルプロセスに匹敵する性能を示す。
論文 参考訳(メタデータ) (2021-02-17T13:50:07Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
任意の特定のリー群からの変換に同値な畳み込み層を構築するための一般的な方法を提案する。
同じモデルアーキテクチャを画像、ボール・アンド・スティック分子データ、ハミルトン力学系に適用する。
論文 参考訳(メタデータ) (2020-02-25T17:40:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。