論文の概要: Fast and More Powerful Selective Inference for Sparse High-order
Interaction Model
- arxiv url: http://arxiv.org/abs/2106.04929v1
- Date: Wed, 9 Jun 2021 09:22:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-10 15:22:10.258611
- Title: Fast and More Powerful Selective Inference for Sparse High-order
Interaction Model
- Title(参考訳): スパース高次相互作用モデルに対する高速・高能率選択推論
- Authors: Diptesh Das, Vo Nguyen Le Duy, Hiroyuki Hanada, Koji Tsuda, Ichiro
Takeuchi
- Abstract要約: 本研究では,Sparse High-order Interaction Model (SHIM)について考察する。
統計的に重要な高次相互作用を見つけることは、その効果の本質的な高次元性のために困難である。
我々の主な貢献は、高次相互作用モデルへの選択的推論のために最近開発されたパラメトリックプログラミングアプローチを拡張することである。
- 参考スコア(独自算出の注目度): 17.549975092550074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated high-stake decision-making such as medical diagnosis requires
models with high interpretability and reliability. As one of the interpretable
and reliable models with good prediction ability, we consider Sparse High-order
Interaction Model (SHIM) in this study. However, finding statistically
significant high-order interactions is challenging due to the intrinsic high
dimensionality of the combinatorial effects. Another problem in data-driven
modeling is the effect of "cherry-picking" a.k.a. selection bias. Our main
contribution is to extend the recently developed parametric programming
approach for selective inference to high-order interaction models. Exhaustive
search over the cherry tree (all possible interactions) can be daunting and
impractical even for a small-sized problem. We introduced an efficient pruning
strategy and demonstrated the computational efficiency and statistical power of
the proposed method using both synthetic and real data.
- Abstract(参考訳): 診断などの高い意思決定を自動化するには、高い解釈性と信頼性のモデルが必要である。
本研究では,優れた予測能力を有する解釈可能な信頼性モデルの一つとして,Sparse High-order Interaction Model (SHIM)について考察する。
しかし、統計的に有意な高次相互作用を見つけることは、組合せ効果の固有高次元のため困難である。
データ駆動モデリングのもう1つの問題は「チェリーピッキング」 a.k.a の効果である。
選択バイアス。
我々の主な貢献は、高次相互作用モデルへの選択的推論のために最近開発されたパラメトリックプログラミングアプローチを拡張することである。
桜の木の露光的探索(すべての相互作用の可能性)は、小さな問題であっても、困難で実用的ではない。
効率的な刈り取り戦略を導入し,合成データと実データの両方を用いて,提案手法の計算効率と統計的パワーを実証した。
関連論文リスト
- SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction [15.832975722301011]
本稿では,最小限の精度で説明可能性を向上させる手法を提案する。
我々は,AI技術を利用してノードを推定する新しい手法を開発した。
我々の研究は、統計的方法論が説明可能なAIを前進させる上で重要な役割を担っている。
論文 参考訳(メタデータ) (2024-06-16T14:43:01Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - An Efficient Hierarchical Kriging Modeling Method for High-dimension
Multi-fidelity Problems [0.0]
マルチファイダリティ・クリグモデルはサロゲートベース設計において有望な手法である。
多要素クリグモデルの構築コストは問題次元の増大とともに大幅に増大する。
この問題に対処するために,効率的な階層的クラッキングモデリング手法を提案する。
論文 参考訳(メタデータ) (2022-12-31T15:17:07Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
本稿では,既存の複雑な相互作用モデルから,知識蒸留によるCTR予測のための高次特徴相互作用を学習するための非巡回グラフファクトリゼーションマシン(KD-DAGFM)を提案する。
KD-DAGFMは、オンラインとオフラインの両方の実験において、最先端のFLOPの21.5%未満で最高の性能を達成する。
論文 参考訳(メタデータ) (2022-11-21T03:09:42Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
動的モード分解は、動的データを研究するための非常に効率的な手法であることが証明された。
このアプローチの適用は、利用可能なデータが不完全である場合に問題となる。
本稿では,森-Zwanzig分解の1次近似を考察し,対応する最適化問題を記述し,勾配に基づく最適化法を用いて解く。
論文 参考訳(メタデータ) (2022-02-23T11:23:59Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - On Statistical Efficiency in Learning [37.08000833961712]
モデルフィッティングとモデル複雑性のバランスをとるためのモデル選択の課題に対処する。
モデルの複雑さを順次拡大し、選択安定性を高め、コストを削減するオンラインアルゴリズムを提案します。
実験の結果, 提案手法は予測能力が高く, 計算コストが比較的低いことがわかった。
論文 参考訳(メタデータ) (2020-12-24T16:08:29Z) - Causal Inference with Deep Causal Graphs [0.0]
パラメトリック因果モデリング技術は、カウンターファクト推定の機能を提供することはめったにない。
Deep Causal Graphsは、因果分布をモデル化するニューラルネットワークに必要な機能の抽象的な仕様である。
複雑な相互作用をモデル化する上で,その表現力を示し,機械学習の説明可能性と公正性を示す。
論文 参考訳(メタデータ) (2020-06-15T13:03:33Z) - Supervised Autoencoders Learn Robust Joint Factor Models of Neural
Activity [2.8402080392117752]
神経科学の応用は、行動結果とともに異なる領域の脳活動に対応する高次元予測因子を収集する。
予測因子と結果の結合因子モデルは自然であるが、これらのモデルの最大推定値は、モデルが不特定である場合に実際に苦労することがある。
本稿では,教師付きオートエンコーダに基づく代替推論手法を提案する。潜在因子に確率分布を配置するのではなく,高次元予測器の未知関数として定義する。
論文 参考訳(メタデータ) (2020-04-10T19:31:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。