論文の概要: Early-stopped neural networks are consistent
- arxiv url: http://arxiv.org/abs/2106.05932v1
- Date: Thu, 10 Jun 2021 17:26:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-11 14:33:36.975483
- Title: Early-stopped neural networks are consistent
- Title(参考訳): 早期停止型ニューラルネットワークは一貫性がある
- Authors: Ziwei Ji, Justin D. Li, Matus Telgarsky
- Abstract要約: 本研究では,二項分類データに基づく勾配降下によるロジスティック損失を学習したニューラルネットワークの挙動について検討する。
人口リスクの早期停止に伴う勾配降下は,ロジスティックな損失や誤分類の損失だけでなく,キャリブレーションの観点からも達成できることが示されている。
- 参考スコア(独自算出の注目度): 32.39561136060002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work studies the behavior of neural networks trained with the logistic
loss via gradient descent on binary classification data where the underlying
data distribution is general, and the (optimal) Bayes risk is not necessarily
zero. In this setting, it is shown that gradient descent with early stopping
achieves population risk arbitrarily close to optimal in terms of not just
logistic and misclassification losses, but also in terms of calibration,
meaning the sigmoid mapping of its outputs approximates the true underlying
conditional distribution arbitrarily finely. Moreover, the necessary iteration,
sample, and architectural complexities of this analysis all scale naturally
with a certain complexity measure of the true conditional model. Lastly, while
it is not shown that early stopping is necessary, it is shown that any
univariate classifier satisfying a local interpolation property is necessarily
inconsistent.
- Abstract(参考訳): 本研究は、基礎となるデータ分布が一般的で(最適)ベイズリスクが必ずしもゼロではないバイナリ分類データの勾配降下を通じてロジスティック損失で訓練されたニューラルネットワークの挙動を研究する。
この設定では,早期停止による勾配降下は,ロジスティックな損失や誤分類の損失だけでなく,キャリブレーションの観点からも,任意に最適に近い人口リスクをもたらすことが示され,その結果のシグモイドマッピングは,条件分布の真の基礎を任意に近似する。
さらに、この分析に必要な反復、サンプル、およびアーキテクチャ上の複雑さはすべて、真の条件モデルの特定の複雑性尺度で自然にスケールする。
最後に、早期停止の必要性は示されていないが、局所補間特性を満たす任意の単変量分類器は必ずしも矛盾している。
関連論文リスト
- Sampling from Gaussian Process Posteriors using Stochastic Gradient
Descent [43.097493761380186]
勾配アルゴリズムは線形系を解くのに有効な方法である。
最適値に収束しない場合であっても,勾配降下は正確な予測を導出することを示す。
実験的に、勾配降下は十分に大規模または不条件の回帰タスクにおいて最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-06-20T15:07:37Z) - Fast Convergence in Learning Two-Layer Neural Networks with Separable
Data [37.908159361149835]
2層ニューラルネット上の正規化勾配勾配について検討した。
正規化GDを用いてトレーニング損失の線形収束率を大域的最適に導くことを証明する。
論文 参考訳(メタデータ) (2023-05-22T20:30:10Z) - Benign Overfitting without Linearity: Neural Network Classifiers Trained
by Gradient Descent for Noisy Linear Data [44.431266188350655]
勾配降下による一般化を訓練した2層ニューラルネットワークの一般化誤差を考察する。
ニューラルネットワークはトレーニングエラーをゼロにし、ノイズの多いトレーニングラベルを完璧に適合させ、同時に最小限のテストエラーを達成できる。
線形あるいはカーネルベースの予測器を必要とする良性オーバーフィッティングに関するこれまでの研究とは対照的に、我々の分析はモデルと学習力学の両方が基本的に非線形であるような環境で成り立っている。
論文 参考訳(メタデータ) (2022-02-11T23:04:00Z) - Dense Out-of-Distribution Detection by Robust Learning on Synthetic
Negative Data [1.7474352892977458]
道路走行シーンとリモートセンシング画像における分布外異常の検出方法を示す。
我々は,カバレッジ指向学習の目的と異なる解像度でサンプルを生成する能力により,共同で訓練された正規化フローを活用する。
結果として得られたモデルは、道路走行シーンとリモートセンシング画像におけるアウト・オブ・ディストリビューション検出のためのベンチマークに、新たな技術状況を設定した。
論文 参考訳(メタデータ) (2021-12-23T20:35:10Z) - The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer
Linear Networks [51.1848572349154]
ノイズの多いデータに完全に適合するニューラルネットワークモデルは、見当たらないテストデータにうまく一般化できる。
我々は,2層線形ニューラルネットワークを2乗損失の勾配流で補間し,余剰リスクを導出する。
論文 参考訳(メタデータ) (2021-08-25T22:01:01Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
正規化フローを用いて学習した生成モデルのベイズ誤差を正確に計算できることを示す。
われわれの手法を用いて、最先端の分類モデルについて徹底的な調査を行う。
論文 参考訳(メタデータ) (2021-06-07T06:21:20Z) - Convergence rates for gradient descent in the training of
overparameterized artificial neural networks with biases [3.198144010381572]
近年、人工ニューラルネットワークは、古典的なソリューションが近づいている多数の問題に対処するための強力なツールに発展しています。
ランダムな勾配降下アルゴリズムが限界に達する理由はまだ不明である。
論文 参考訳(メタデータ) (2021-02-23T18:17:47Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Implicit Regularization in ReLU Networks with the Square Loss [56.70360094597169]
モデルパラメータの明示的な関数によって、平方損失による暗黙の正規化を特徴付けることは不可能であることを示す。
非線形予測器の暗黙的正規化を理解するためには,より一般的な枠組みが必要であることが示唆された。
論文 参考訳(メタデータ) (2020-12-09T16:48:03Z) - Theoretical Analysis of Self-Training with Deep Networks on Unlabeled
Data [48.4779912667317]
自己学習アルゴリズムは、ニューラルネットワークを使ってラベルのないデータで学ぶことに成功している。
この研究は、半教師なし学習、教師なしドメイン適応、教師なし学習のための深層ネットワークによる自己学習の統一的理論的解析を提供する。
論文 参考訳(メタデータ) (2020-10-07T19:43:55Z) - Log-Likelihood Ratio Minimizing Flows: Towards Robust and Quantifiable
Neural Distribution Alignment [52.02794488304448]
そこで本研究では,対数様比統計量と正規化フローに基づく新しい分布アライメント手法を提案する。
入力領域の局所構造を保存する領域アライメントにおいて,結果の最小化を実験的に検証する。
論文 参考訳(メタデータ) (2020-03-26T22:10:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。