論文の概要: Continuous Herded Gibbs Sampling
- arxiv url: http://arxiv.org/abs/2106.06430v1
- Date: Fri, 11 Jun 2021 14:37:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-14 14:23:27.009327
- Title: Continuous Herded Gibbs Sampling
- Title(参考訳): 連続型育種ギブズサンプリング
- Authors: Laura M. Wolf and Marcus Baum
- Abstract要約: ハーディングは確率分布から決定論的サンプルを逐次生成する手法である。
本稿では, 連続密度に基づくカーネルハーディングとギブスサンプリングを組み合わせた, 連続型群集型ギブスサンプリング手法を提案する。
- 参考スコア(独自算出の注目度): 1.2183405753834557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Herding is a technique to sequentially generate deterministic samples from a
probability distribution. In this work, we propose a continuous herded Gibbs
sampler, that combines kernel herding on continuous densities with Gibbs
sampling. Our algorithm allows for deterministically sampling from
high-dimensional multivariate probability densities, without directly sampling
from the joint density. Experiments with Gaussian mixture densities indicate
that the L2 error decreases similarly to kernel herding, while the computation
time is significantly lower, i.e., linear in the number of dimensions.
- Abstract(参考訳): herdingは確率分布から決定論的サンプルを順次生成する手法である。
本研究では, 連続密度のカーネルハーディングとギブスサンプリングを組み合わせた連続型群集化ギブスサンプリング器を提案する。
本アルゴリズムは, 接合密度から直接サンプリングすることなく, 高次元多変量確率密度から決定的にサンプリングすることができる。
ガウス混合密度を用いた実験では、L2の誤差はカーネルのハーディングと同様に減少し、計算時間は著しく小さく、すなわち次元数で線形であることが示されている。
関連論文リスト
- In-and-Out: Algorithmic Diffusion for Sampling Convex Bodies [7.70133333709347]
高次元凸体を一様にサンプリングするための新しいランダムウォークを提案する。
出力をより強力な保証で、最先端のランタイムの複雑さを実現する。
論文 参考訳(メタデータ) (2024-05-02T16:15:46Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
ポテンシャル関数が支配する分布からサンプリングする問題を考察する。
本研究は, 決定論的な楽譜に基づくMCMC法を提案し, 粒子に対する決定論的進化をもたらす。
論文 参考訳(メタデータ) (2023-08-28T23:51:33Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic
Analysis For DDIM-Type Samplers [90.45898746733397]
本研究では拡散生成モデルに用いる決定論的サンプリング器の非漸近解析のためのフレームワークを開発する。
確率フローODEに沿った1ステップは,1) 条件付き対数線上を無限に先行して上昇する回復ステップ,2) 雑音を現在の勾配に向けて前向きに進行する劣化ステップの2段階で表すことができる。
論文 参考訳(メタデータ) (2023-03-06T18:59:19Z) - Denoising Diffusion Samplers [41.796349001299156]
拡散モデルの認知は、多くの領域で最先端の結果を提供する生成モデルの一般的なクラスである。
我々は、非正規化確率密度関数から大まかにサンプリングし、それらの正規化定数を推定する類似のアイデアを探求する。
この文脈ではスコアマッチングは適用できないが、モンテカルロサンプリングのために生成的モデリングで導入された多くのアイデアを利用することができる。
論文 参考訳(メタデータ) (2023-02-27T14:37:16Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
我々は、係数に応じてハミルトン式からサンプリングしてランダムな積公式を構築するqDriftプロトコルを導入する。
サンプリング段階における個別のシミュレーションコストを考慮し、同じ精度でシミュレーションコストを削減可能であることを示す。
格子核効果場理論を用いて数値シミュレーションを行った結果, 実験結果が得られた。
論文 参考訳(メタデータ) (2022-12-12T15:06:32Z) - Machine-Learned Exclusion Limits without Binning [0.0]
我々は、1次元信号と背景確率密度関数を抽出するためにカーネル密度推定器(KDE)を含むMLL法を拡張した。
本手法は,レプトン対に崩壊するエキゾチックヒッグス粒子の探索と,レプトン対に崩壊するZ'$ボソンの2例に適用する。
論文 参考訳(メタデータ) (2022-11-09T11:04:50Z) - Unrolling Particles: Unsupervised Learning of Sampling Distributions [102.72972137287728]
粒子フィルタリングは複素系の優れた非線形推定を計算するために用いられる。
粒子フィルタは様々なシナリオにおいて良好な推定値が得られることを示す。
論文 参考訳(メタデータ) (2021-10-06T16:58:34Z) - Relative Entropy Gradient Sampler for Unnormalized Distributions [14.060615420986796]
非正規分布からのサンプリングのための相対エントロピー勾配サンプリング器(REGS)
REGSは、参照分布からサンプルへの初期サンプルを非正規化対象分布から反復的に押し出す単純な非線形変換の列を求める粒子法である。
論文 参考訳(メタデータ) (2021-10-06T14:10:38Z) - Deterministic Gibbs Sampling via Ordinary Differential Equations [77.42706423573573]
本稿では,自律的ODEとツールを用いた決定論的測度保存ダイナミクスの一般構築について述べる。
我々は、ハイブリッドモンテカルロや他の決定論的サンプルが、我々の理論の特別な場合としてどのように従うかを示す。
論文 参考訳(メタデータ) (2021-06-18T15:36:09Z) - Generative Modeling with Denoising Auto-Encoders and Langevin Sampling [88.83704353627554]
DAEとDSMの両方がスムーズな人口密度のスコアを推定することを示した。
次に、この結果をarXiv:1907.05600のホモトピー法に適用し、その経験的成功を理論的に正当化する。
論文 参考訳(メタデータ) (2020-01-31T23:50:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。