論文の概要: Cardiovascular Disease Prediction using Recursive Feature Elimination
and Gradient Boosting Classification Techniques
- arxiv url: http://arxiv.org/abs/2106.08889v1
- Date: Fri, 11 Jun 2021 16:17:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-20 16:12:29.061767
- Title: Cardiovascular Disease Prediction using Recursive Feature Elimination
and Gradient Boosting Classification Techniques
- Title(参考訳): 再帰的特徴除去と勾配強調法による心血管疾患予測
- Authors: Prasannavenkatesan Theerthagiri, Vidya J
- Abstract要約: 本稿では,心疾患の正確な予測を実現するため,RFE-GBアルゴリズムを提案する。
CVDに重要な特徴を持つ患者の健康記録を, 評価のために分析した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cardiovascular diseases (CVDs) are one of the most common chronic illnesses
that affect peoples health. Early detection of CVDs can reduce mortality rates
by preventing or reducing the severity of the disease. Machine learning
algorithms are a promising method for identifying risk factors. This paper
proposes a proposed recursive feature elimination-based gradient boosting
(RFE-GB) algorithm in order to obtain accurate heart disease prediction. The
patients health record with important CVD features has been analyzed for the
evaluation of the results. Several other machine learning methods were also
used to build the prediction model, and the results were compared with the
proposed model. The results of this proposed model infer that the combined
recursive feature elimination and gradient boosting algorithm achieves the
highest accuracy (89.7 %). Further, with an area under the curve of 0.84, the
proposed RFE-GB algorithm was found superior and had obtained a substantial
gain over other techniques. Thus, the proposed RFE-GB algorithm will serve as a
prominent model for CVD estimation and treatment.
- Abstract(参考訳): 心臓血管疾患(cvds)は、人の健康に影響を与える最も一般的な慢性疾患の1つである。
CVDの早期検出は、病気の重症度を予防または軽減することにより死亡率を低下させる。
機械学習アルゴリズムはリスク要因を特定するための有望な方法である。
本稿では, 心疾患の予測精度を高めるために, 再帰的特徴除去型勾配増強法 (RFE-GB) を提案する。
CVDに重要な特徴を持つ患者の健康記録を, 評価のために分析した。
予測モデルの構築には他にもいくつかの機械学習手法が用いられ、その結果は提案モデルと比較された。
このモデルにより,再帰的特徴除去法と勾配促進法を組み合わせることで,最大精度(89.7%)が得られた。
さらに、曲線0.84以下の領域では、提案した RFE-GB アルゴリズムの方が優れており、他の手法よりもかなりの利得を得た。
したがって、提案したRFE-GBアルゴリズムはCVD推定と処理の顕著なモデルとして機能する。
関連論文リスト
- A Joint Representation Using Continuous and Discrete Features for Cardiovascular Diseases Risk Prediction on Chest CT Scans [12.652540031719571]
胸部CT画像から抽出した離散的量的バイオマーカーと連続的な深部特徴を統合した新しい関節表現法を提案する。
本手法はCVDリスク予測性能を大幅に改善し,各バイオマーカーの個人貢献分析を行う。
論文 参考訳(メタデータ) (2024-10-24T10:06:45Z) - Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
心血管疾患(CVD)のリスクのある患者の早期発見は、効果的な予防ケア、医療負担の軽減、患者の生活の質の向上に不可欠である。
本研究は、網膜光コヒーレンス断層撮影(OCT)と眼底写真との併用による、将来の心疾患の特定の可能性を示すものである。
そこで我々は,MCVAE(Multi- Channel Variational Autoencoder)に基づく新たなバイナリ分類ネットワークを提案し,患者の眼底画像とOCT画像の潜伏埋め込みを学習し,個人を将来CVDを発症する可能性のあるものとそうでないものとの2つのグループに分類する。
論文 参考訳(メタデータ) (2024-10-18T12:37:51Z) - Deciphering Cardiac Destiny: Unveiling Future Risks Through Cutting-Edge Machine Learning Approaches [0.0]
本研究の目的は,心停止事故のタイムリー同定のための予測モデルの開発と評価である。
我々は、XGBoost、Gradient Boosting、Naive Bayesといった機械学習アルゴリズムと、リカレントニューラルネットワーク(RNN)によるディープラーニング(DL)アプローチを採用しています。
厳密な実験と検証により,RNNモデルの優れた性能が示された。
論文 参考訳(メタデータ) (2024-09-03T19:18:16Z) - Research on Early Warning Model of Cardiovascular Disease Based on Computer Deep Learning [5.761426161930679]
本研究は,1次元畳み込みニューラルネットワークに基づく心血管疾患早期警戒モデルについて検討することを目的とする。
患者年齢,血糖値,コレステロール値,胸痛値などの生理・症状指標が欠落し,Zスコアが標準化された。
論文 参考訳(メタデータ) (2024-06-13T07:04:22Z) - Predicting risk of cardiovascular disease using retinal OCT imaging [40.71667870702634]
将来性心血管疾患(CVD)の予知法としての光コヒーレンス断層撮影の可能性について検討した。
我々は,変分オートエンコーダ(VAE)に基づく自己教師型ディープラーニング手法を用いて,高次元 OCT 画像の低次元表現を学習した。
OCT画像で見られる脈絡膜層は,新しいモデル説明可能性アプローチを用いて,今後のCVD事象の予測因子として同定された。
論文 参考訳(メタデータ) (2024-03-26T14:42:46Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
ノイズと品質の悪い録音は、モバイルヘルスシステムを使って収集された信号にとって大きな問題である。
近年の研究では、確率的時系列モデルによるECGの欠落値の計算が検討されている。
本稿では,様々な健康状態の事前情報として,テンプレート誘導型拡散確率モデル(DDPM)PulseDiffを提案する。
論文 参考訳(メタデータ) (2023-10-24T11:34:15Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
肺がんは世界中のがん死亡の原因であり、効果的な治療法を設計するための死亡リスクを理解することの重要性を強調している。
NLST(National Lung Screening Trial)は、肺がん患者の死亡リスクを定量化するために、CTテクスチャ解析を用いている。
本稿では,SCADペナルティを組み込んで重要なテクスチャ特徴を抽出し,深層ニューラルネットワークを用いてモデルの非パラメトリック成分を推定する,Pentalized Deep partially Linear Cox Model (Penalized DPLC)を提案する。
論文 参考訳(メタデータ) (2023-03-09T15:38:16Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - Machine Learning-Based Classification Algorithms for the Prediction of
Coronary Heart Diseases [0.0]
この研究は、いくつかの機械学習に基づく分類モデルを作成し、テストした。
その結果、ロジスティック回帰は、元のデータセット上で最高のパフォーマンススコアを生み出した。
結論として,順調に処理され,標準化されたデータセット上のLRが,他のアルゴリズムよりも精度の高い冠状心疾患を予測できることが示唆された。
論文 参考訳(メタデータ) (2021-12-02T18:52:56Z) - Ensemble machine learning approach for screening of coronary heart
disease based on echocardiography and risk factors [19.076443235356873]
我々は,モデル積み重ねにより,多くの一般的な分類手法を統合する機械学習アプローチを開発した。
CHD分類の精度は,テストセットで約70%から87.7%に向上した。
論文 参考訳(メタデータ) (2021-05-20T11:04:58Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
本稿では,電子カルテから心血管イベントを予測するための注意機構を備えたマルチタスク・リカレントニューラルネットワークを提案する。
提案手法は、NHS Foundation Trustの5年間のデータを用いて、標準的な臨床リスク予測器(QRISK)と機械学習の代替手段と比較される。
論文 参考訳(メタデータ) (2020-07-16T17:43:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。