論文の概要: Mortality Prediction of Pulmonary Embolism Patients with Deep Learning and XGBoost
- arxiv url: http://arxiv.org/abs/2411.18063v1
- Date: Wed, 27 Nov 2024 05:15:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:27:31.475224
- Title: Mortality Prediction of Pulmonary Embolism Patients with Deep Learning and XGBoost
- Title(参考訳): 深層学習とXGBoostによる肺塞栓症の死亡率予測
- Authors: Yalcin Tur, Vedat Cicek, Tufan Cinar, Elif Keles, Bradlay D. Allen, Hatice Savas, Gorkem Durak, Alpay Medetalibeyoglu, Ulas Bagci,
- Abstract要約: 肺塞栓症(PE)は死亡率と致命的な疾患の主要な原因である。
従来の臨床手法では, PE患者の30日間の院内死亡を予測できた。
- 参考スコア(独自算出の注目度): 0.5942186563711294
- License:
- Abstract: Pulmonary Embolism (PE) is a serious cardiovascular condition that remains a leading cause of mortality and critical illness, underscoring the need for enhanced diagnostic strategies. Conventional clinical methods have limited success in predicting 30-day in-hospital mortality of PE patients. In this study, we present a new algorithm, called PEP-Net, for 30-day mortality prediction of PE patients based on the initial imaging data (CT) that opportunistically integrates a 3D Residual Network (3DResNet) with Extreme Gradient Boosting (XGBoost) algorithm with patient level binary labels without annotations of the emboli and its extent. Our proposed system offers a comprehensive prediction strategy by handling class imbalance problems, reducing overfitting via regularization, and reducing the prediction variance for more stable predictions. PEP-Net was tested in a cohort of 193 volumetric CT scans diagnosed with Acute PE, and it demonstrated a superior performance by significantly outperforming baseline models (76-78\%) with an accuracy of 94.5\% (+/-0.3) and 94.0\% (+/-0.7) when the input image is either lung region (Lung-ROI) or heart region (Cardiac-ROI). Our results advance PE prognostics by using only initial imaging data, setting a new benchmark in the field. While purely deep learning models have become the go-to for many medical classification (diagnostic) tasks, combined ResNet and XGBoost models herein outperform sole deep learning models due to a potential reason for having lack of enough data.
- Abstract(参考訳): 肺塞栓症(PE)は重篤な心血管疾患であり、死と重篤な疾患の主要な原因であり、診断戦略の強化の必要性を強調している。
従来の臨床手法では, PE患者の30日間の院内死亡を予測できた。
本研究では,初期画像データ(CT)に基づくPE患者の30日間の死亡予測のためのPEP-Netと呼ばれる新しいアルゴリズムを提案する。このアルゴリズムは,3D Residual Network(3DResNet)とExtreme Gradient Boosting(XGBoost)アルゴリズムを,エボリのアノテーションを伴わずに患者レベルのバイナリラベルを付加する。
提案システムは,クラス不均衡問題に対処し,正規化によるオーバーフィッティングを減らし,より安定した予測を行うための予測分散を減らし,包括的予測戦略を提供する。
PEP-Netは急性PEと診断された193例のCTスキャンで試験され、入力画像が肺領域(Lung-ROI)または心臓領域(Cardiac-ROI)である場合、94.5\%(+/0.3)および94.0\%(+/0.7)の精度でベースラインモデル(76-78\%)を大幅に上回り、優れた性能を示した。
本研究は,初期画像データのみを用いてPE診断を推し進め,新しいベンチマークをフィールドに設定した。
純粋に深層学習モデルは、多くの医学的分類(診断的)タスクの目標となっているが、ResNetとXGBoostの組み合わせは、十分なデータが不足する潜在的な理由から、単独の深層学習モデルより優れている。
関連論文リスト
- Prediction of Lung Metastasis from Hepatocellular Carcinoma using the SEER Database [0.9055332067000195]
肝細胞癌(HCC)は、がん関連死亡の原因である。
HCCにおける肺転移の予測モデルは、範囲と臨床応用性に限られている。
本研究では,Surveillance, Epidemiology, End Results (SEER)データベースのデータを用いて,エンドツーエンドの機械学習パイプラインの開発と検証を行う。
論文 参考訳(メタデータ) (2025-01-20T20:06:31Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Semi-supervised ViT knowledge distillation network with style transfer
normalization for colorectal liver metastases survival prediction [1.283897253352624]
本稿では,H&EおよびHPSで染色した組織学的スライドを用いて,自動予後予測のためのエンドツーエンドアプローチを提案する。
まずGAN(Generative Adversarial Network)を用いてスライス正規化を行い、染色のばらつきを低減し、予測パイプラインへの入力として使用される画像の全体的な品質を向上させる。
転移性結節および周囲組織から抽出した特徴を利用して予後モデルを訓練し,同時に知識蒸留フレームワークで視覚変換器(ViT)を訓練し,予後予測の性能を再現し,向上させる。
論文 参考訳(メタデータ) (2023-11-17T03:32:11Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - Ischemic Stroke Lesion Prediction using imbalanced Temporal Deep
Gaussian Process (iTDGP) [2.649401887836554]
急性虚血性脳卒中(AIS)は、動脈閉塞により突然脳への血液供給が中断されたときに起こる。
CT(Computed Tomography Perfusion)画像から抽出した3次元計測マップをしきい値として評価する現在の標準AIS評価法は十分ではない。
ベースラインガウス時系列を用いてAIS予測を改善する確率モデルであるiTDGPを提案する。
論文 参考訳(メタデータ) (2022-11-16T17:32:29Z) - Multimodal spatiotemporal graph neural networks for improved prediction
of 30-day all-cause hospital readmission [4.609543591101764]
本研究では,30日間の院内通院予測のためのマルチモーダル・モダリティ非依存型グラフニューラルネットワーク(MM-STGNN)を提案する。
MM-STGNNは、プライマリデータセットと外部データセットの両方で0.79のAUを達成する。
心臓・血管疾患患者のサブセットでは,30日間の寛解予測において,ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2022-04-14T05:50:07Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
既存の結果予測モデルは、頻繁なポジティブな結果の低いリコールに悩まされる。
我々は、死亡率とICUの受け入れによって表される逆さを自動的に予測する、高度にスケーリング可能な、堅牢な機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-18T15:56:28Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。