論文の概要: Unified dimensionality reduction techniques in chronic liver disease detection
- arxiv url: http://arxiv.org/abs/2412.21156v1
- Date: Mon, 30 Dec 2024 18:35:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:04:58.880028
- Title: Unified dimensionality reduction techniques in chronic liver disease detection
- Title(参考訳): 慢性肝疾患検出における一様次元縮小法
- Authors: Anand Karna, Naina Khan, Rahul Rauniyar, Prashant Giridhar Shambharkar,
- Abstract要約: 本研究では,多くの機械学習アルゴリズムについて検討した。
本研究の主な焦点は, 583名の患者の医療記録を含む, このデータセットである。
検索は、カスタマイズされた特徴抽出と次元削減方法の選択と使用に関する重要な新しい視点を提供する。
- 参考スコア(独自算出の注目度): 0.5242869847419834
- License:
- Abstract: Globally, chronic liver disease continues to be a major health concern that requires precise predictive models for prompt detection and treatment. Using the Indian Liver Patient Dataset (ILPD) from the University of California at Irvine's UCI Machine Learning Repository, a number of machine learning algorithms are investigated in this study. The main focus of our research is this dataset, which includes the medical records of 583 patients, 416 of whom have been diagnosed with liver disease and 167 of whom have not. There are several aspects to this work, including feature extraction and dimensionality reduction methods like Linear Discriminant Analysis (LDA), Factor Analysis (FA), t-distributed Stochastic Neighbour Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP). The purpose of the study is to investigate how well these approaches work for converting high-dimensional datasets and improving prediction accuracy. To assess the prediction ability of the improved models, a number of classification methods were used, such as Multi-layer Perceptron, Random Forest, K-nearest neighbours, and Logistic Regression. Remarkably, the improved models performed admirably, with Random Forest having the highest accuracy of 98.31\% in 10-fold cross-validation and 95.79\% in train-test split evaluation. Findings offer important new perspectives on the choice and use of customized feature extraction and dimensionality reduction methods, which improve predictive models for patients with chronic liver disease.
- Abstract(参考訳): 世界的には、慢性肝疾患は、迅速な検出と治療のために正確な予測モデルを必要とする主要な健康上の問題であり続けている。
カリフォルニア大学アーバイン校のUCI Machine Learning RepositoryにあるIndian Liver patient Dataset (ILPD)を用いて,多くの機械学習アルゴリズムについて検討した。
本研究の主目的は, 肝疾患と診断された症例583例, 肝疾患と診断された症例416例, 診断されていない症例167例である。
この研究には、LDA(Linear Discriminant Analysis)、FA(Facter Analysis)、t-distributed Stochastic Neighbour Embedding(t-SNE)、UMAP(Uniform Manifold Approximation and Projection)といった特徴抽出と次元削減手法がある。
本研究の目的は,これらの手法が高次元データセットの変換や予測精度の向上にどの程度役立つかを検討することである。
改良モデルの予測能力を評価するため,多層パーセプトロン,ランダムフォレスト,K-アネレスト,ロジスティック回帰などの分類手法が用いられた。
注目すべきことに、改良されたモデルでは、Random Forestが10倍のクロスバリデーションで98.31\%、列車と試験の分割評価で95.79\%と高い精度で実行された。
発見は、慢性肝疾患患者の予測モデルを改善するために、カスタマイズされた特徴抽出と次元縮小方法の選択と利用に関する重要な新しい視点を提供する。
関連論文リスト
- Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach [7.212939068975618]
10,326人のCKD患者のデータを利用して,2009年から2018年までの臨床とクレーム情報を組み合わせた。
24ヶ月の観測窓は早期検出と予測精度のバランスをとるのに最適であると同定された。
2021年のeGFR方程式は予測精度を改善し、特にアフリカ系アメリカ人の偏見を低減した。
論文 参考訳(メタデータ) (2024-10-02T03:21:01Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - Semi-supervised ViT knowledge distillation network with style transfer
normalization for colorectal liver metastases survival prediction [1.283897253352624]
本稿では,H&EおよびHPSで染色した組織学的スライドを用いて,自動予後予測のためのエンドツーエンドアプローチを提案する。
まずGAN(Generative Adversarial Network)を用いてスライス正規化を行い、染色のばらつきを低減し、予測パイプラインへの入力として使用される画像の全体的な品質を向上させる。
転移性結節および周囲組織から抽出した特徴を利用して予後モデルを訓練し,同時に知識蒸留フレームワークで視覚変換器(ViT)を訓練し,予後予測の性能を再現し,向上させる。
論文 参考訳(メタデータ) (2023-11-17T03:32:11Z) - Deep Learning for Predicting Progression of Patellofemoral
Osteoarthritis Based on Lateral Knee Radiographs, Demographic Data and
Symptomatic Assessments [1.1549572298362785]
本研究はMOST研究のベースラインから被験者(被験者1832名,膝3276名)を抽出した。
PF関節領域は, 側膝X線上の自動ランドマーク検出ツール(BoneFinder)を用いて同定した。
年齢、性別、BMIおよびWOMACスコア、および大腿骨関節X線学的関節炎ステージ(KLスコア)の危険因子について
論文 参考訳(メタデータ) (2023-05-10T06:43:33Z) - Detecting Chronic Kidney Disease(CKD) at the Initial Stage: A Novel
Hybrid Feature-selection Method and Robust Data Preparation Pipeline for
Different ML Techniques [0.0]
慢性腎臓病(CKD)は世界中で8億人近くに感染している。毎年約170万人が死亡している。
多くの研究者は、CKDを早期に検出するために異なる機械学習(ML)手法を適用しているが、詳細な研究はいまだに欠けている。
本稿では,医療データの複雑さを最適性能で扱うための構造的かつ徹底的な手法を提案する。
論文 参考訳(メタデータ) (2022-03-02T20:38:49Z) - Cardiovascular Disease Prediction using Recursive Feature Elimination
and Gradient Boosting Classification Techniques [0.0]
本稿では,心疾患の正確な予測を実現するため,RFE-GBアルゴリズムを提案する。
CVDに重要な特徴を持つ患者の健康記録を, 評価のために分析した。
論文 参考訳(メタデータ) (2021-06-11T16:17:42Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Joint Prediction and Time Estimation of COVID-19 Developing Severe
Symptoms using Chest CT Scan [49.209225484926634]
術後に重篤な症状を発症するかどうかを判定するための共同分類法と回帰法を提案する。
提案手法は,各試料の重量を考慮し,外乱の影響を低減し,不均衡な分類の問題を検討する。
提案手法では, 重症症例の予測精度76.97%, 相関係数0.524, 変換時間0.55日差が得られた。
論文 参考訳(メタデータ) (2020-05-07T12:16:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。