Diffraction and interference with run-and-tumble particles
- URL: http://arxiv.org/abs/2106.09568v2
- Date: Fri, 18 Feb 2022 16:54:46 GMT
- Title: Diffraction and interference with run-and-tumble particles
- Authors: Christian Maes, Kasper Meerts and Ward Struyve
- Abstract summary: Run-and-tumble particles naturally appear outside a biological context as well, e.g. for producing waves in the telegraph process.
We visualize the trajectories in diffraction and double slit experiments for electrons.
We observe that away from pure quantum guidance, run-and-tumble particles with suitable spacetime-dependent parameters produce an interference pattern as well.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Run-and-tumble particles, frequently considered today for modeling bacterial
locomotion, naturally appear outside a biological context as well, e.g. for
producing waves in the telegraph process. Here, we use a wave function to drive
their propulsion and tumbling. Such quantum-active motion realizes a jittery
motion of Dirac electrons (as in the famous Zitterbewegung): the Dirac electron
is a run-and-tumble particle, where the tumbling is between chiralities. We
visualize the trajectories in diffraction and double slit experiments for
electrons. In particular, that yields the time-of-arrival statistics of the
electrons at the screen. Finally, we observe that away from pure quantum
guidance, run-and-tumble particles with suitable spacetime-dependent parameters
produce an interference pattern as well.
Related papers
- Relativistic Effects on Entangled Single-Electron Traps [0.0]
In the relativistic regime, interactions between charged particles become affected by post-Coulombian corrections.
We look into the behaviour of quantum entanglement present in the static and dynamical regimes.
arXiv Detail & Related papers (2024-06-25T18:00:01Z) - Relativistic single-electron wavepacket in quantum electromagnetic fields: Quantum coherence, correlations, and the Unruh effect [0.0]
We present a linearized effective theory using a Gaussian wavepacket description of a charged relativistic particle coupled to quantum electromagnetic fields.
We address the issues of decoherence of flying electrons in free space and the impact of Unruh effect on the electrons.
For a single electron accelerated in a uniform electric field, we identify the Unruh effect in the two-point correlators of the deviations from the electron's classical trajectory.
arXiv Detail & Related papers (2024-01-27T13:23:44Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Motion induced excitation and electromagnetic radiation from an atom
facing a thin mirror [62.997667081978825]
We evaluate the probability of (de-)excitation and photon emission from a neutral, moving, non-relativistic atom, coupled to a quantum electromagnetic field and in the presence of a thin, perfectly conducting plane ("mirror")
Results extend to a more realistic model, where the would-be electron was described by a scalar variable, coupled to an (also scalar) vacuum field.
arXiv Detail & Related papers (2022-07-06T20:54:59Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Motion-induced radiation due to an atom in the presence of a graphene
plane [62.997667081978825]
We study the motion-induced radiation due to the non-relativistic motion of an atom in the presence of a static graphene plate.
We show that the effect of the plate is to increase the probability of emission when the atom is near the plate and oscillates along a direction perpendicular to it.
arXiv Detail & Related papers (2021-04-15T14:15:23Z) - Relativistic electron spin dynamics in a strong unipolar laser field [0.0]
We show proportionality between the change of the electron spin projections and the electric field area of the pulse.
It is shown that the classical relativistic predictions are accurately reproduced when using the Foldy-Wouthuysen operator.
arXiv Detail & Related papers (2020-05-06T14:10:09Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - A mechanical analog of quantum bradyons and tachyons [0.0]
We present an analog of a quantum wave-particle duality: a vibrating string threaded through a freely moving bead or masslet'
For small string amplitudes, the particle movement is governed by a set of non-linear dynamical equations.
Subsonic and supersonic particles can fall into a quantum regime as with the slower-than-light bradyons and hypothetical, faster-than-light tachyons of particle physics.
arXiv Detail & Related papers (2020-02-19T12:56:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.