論文の概要: Hard Choices in Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2106.11022v1
- Date: Thu, 10 Jun 2021 09:49:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-27 09:05:07.790128
- Title: Hard Choices in Artificial Intelligence
- Title(参考訳): 人工知能における難しい選択
- Authors: Roel Dobbe, Thomas Krendl Gilbert, Yonatan Mintz
- Abstract要約: この曖昧さは数学的形式主義だけでは解決できないことを示す。
この曖昧さは数学的形式主義だけでは解決できないことを示す。
- 参考スコア(独自算出の注目度): 0.8594140167290096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As AI systems are integrated into high stakes social domains, researchers now
examine how to design and operate them in a safe and ethical manner. However,
the criteria for identifying and diagnosing safety risks in complex social
contexts remain unclear and contested. In this paper, we examine the vagueness
in debates about the safety and ethical behavior of AI systems. We show how
this vagueness cannot be resolved through mathematical formalism alone, instead
requiring deliberation about the politics of development as well as the context
of deployment. Drawing from a new sociotechnical lexicon, we redefine vagueness
in terms of distinct design challenges at key stages in AI system development.
The resulting framework of Hard Choices in Artificial Intelligence (HCAI)
empowers developers by 1) identifying points of overlap between design
decisions and major sociotechnical challenges; 2) motivating the creation of
stakeholder feedback channels so that safety issues can be exhaustively
addressed. As such, HCAI contributes to a timely debate about the status of AI
development in democratic societies, arguing that deliberation should be the
goal of AI Safety, not just the procedure by which it is ensured.
- Abstract(参考訳): AIシステムは高利害な社会的ドメインに統合されているため、研究者は安全で倫理的な方法でAIを設計し、運用する方法を調べている。
しかしながら、複雑な社会的文脈における安全リスクの特定と診断の基準はいまだ不明であり、議論されている。
本稿では,AIシステムの安全性と倫理的行動に関する議論の曖昧さについて検討する。
我々は、この曖昧さを数学的形式だけで解決できないことを示し、その代わりに開発の政治や展開の文脈について熟考する必要がある。
新しい社会技術レキシコンを引いて、AIシステム開発の重要段階における異なる設計上の課題の観点から曖昧さを再定義する。
人工知能(HCAI)におけるハード・チョイス(ハード・チョイス)の枠組みは、1)設計決定と主要な社会技術的課題の重複点を特定すること、2)ステークホルダーのフィードバックチャネルの作成を動機付け、安全性の問題を徹底的に解決できるようにする。
そのため、HCAIは民主社会におけるAI開発の現状に関するタイムリーな議論に寄与し、議論はAI安全の目標であり、それが確実にされる手続きではないと主張した。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - Trustworthy, Responsible, and Safe AI: A Comprehensive Architectural Framework for AI Safety with Challenges and Mitigations [14.150792596344674]
AI安全性は、AIシステムの安全な採用とデプロイにおいて重要な領域である。
私たちの目標は、AI安全研究の進歩を促進し、究極的には、デジタルトランスフォーメーションに対する人々の信頼を高めることです。
論文 参考訳(メタデータ) (2024-08-23T09:33:48Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - Towards a Privacy and Security-Aware Framework for Ethical AI: Guiding
the Development and Assessment of AI Systems [0.0]
本研究は2020年から2023年までの系統的な文献レビューを行う。
本研究は,SLRから抽出した知識の合成を通じて,プライバシとセキュリティを意識したAIシステムに適した概念的枠組みを提案する。
論文 参考訳(メタデータ) (2024-03-13T15:39:57Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Relational Artificial Intelligence [5.5586788751870175]
AIは伝統的に合理的な意思決定と結びついているが、すべての面においてAIの社会的影響を理解し、形作るためには、リレーショナルな視点が必要である。
AIに対する合理的なアプローチでは、計算アルゴリズムが人間の介入から独立して意思決定を推進し、バイアスと排除をもたらすことが示されている。
物事のリレーショナルな性質に焦点を当てたリレーショナルアプローチは、AIの倫理的、法的、社会的、文化的、環境的な影響を扱うために必要である。
論文 参考訳(メタデータ) (2022-02-04T15:29:57Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
技術者とAI研究者は、信頼できるAIシステムを開発する責任がある。
AIと人間の長期的な信頼を構築するためには、アルゴリズムの公正性を超えて考えることが鍵だ、と私たちは主張する。
論文 参考訳(メタデータ) (2021-01-01T17:34:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。