論文の概要: Learning Dynamical Systems from Noisy Sensor Measurements using Multiple
Shooting
- arxiv url: http://arxiv.org/abs/2106.11712v1
- Date: Tue, 22 Jun 2021 12:30:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-23 20:59:11.698419
- Title: Learning Dynamical Systems from Noisy Sensor Measurements using Multiple
Shooting
- Title(参考訳): 複数撮影による騒音センサ計測からの学習力学系
- Authors: Armand Jordana, Justin Carpentier, Ludovic Righetti
- Abstract要約: 本稿では,間接的に観測された動的システムの潜在表現を学習するための汎用的かつスケーラブルな手法を提案する。
生画像から直接観察されたシステム上での最先端の性能を実現する。
- 参考スコア(独自算出の注目度): 11.771843031752269
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling dynamical systems plays a crucial role in capturing and
understanding complex physical phenomena. When physical models are not
sufficiently accurate or hardly describable by analytical formulas, one can use
generic function approximators such as neural networks to capture the system
dynamics directly from sensor measurements. As for now, current methods to
learn the parameters of these neural networks are highly sensitive to the
inherent instability of most dynamical systems of interest, which in turn
prevents the study of very long sequences. In this work, we introduce a generic
and scalable method based on multiple shooting to learn latent representations
of indirectly observed dynamical systems. We achieve state-of-the-art
performances on systems observed directly from raw images. Further, we
demonstrate that our method is robust to noisy measurements and can handle
complex dynamical systems, such as chaotic ones.
- Abstract(参考訳): 力学系のモデリングは複雑な物理現象を捉え理解する上で重要な役割を果たしている。
物理モデルが解析公式によって十分に正確でない場合、ニューラルネットワークのような一般的な関数近似器を使用して、センサー測定から直接システムダイナミクスをキャプチャすることができる。
今のところ、これらのニューラルネットワークのパラメータを学習する現在の手法は、多くの動的システムの固有の不安定性に非常に敏感であり、非常に長いシーケンスの研究を妨げている。
本研究では,間接的に観測される動的システムの潜在表現を学習するために,多重撮影に基づく汎用的かつスケーラブルな手法を提案する。
生画像から直接観察されたシステム上での最先端の性能を実現する。
さらに,本手法は雑音測定に頑健であり,カオス力学系などの複雑な力学系を扱えることを示す。
関連論文リスト
- Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - On the effectiveness of neural priors in modeling dynamical systems [28.69155113611877]
ニューラルネットワークがそのようなシステムを学ぶ際に提供するアーキテクチャの規則化について論じる。
動的システムをモデル化する際の複数の問題を解決するために,レイヤ数が少ない単純な座標ネットワークが利用できることを示す。
論文 参考訳(メタデータ) (2023-03-10T06:21:24Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
本稿では,時系列データの非定常および非線形の複雑なダイナミクスを表現した新しい分解力学系モデルを提案する。
我々のモデルは辞書学習によって訓練され、最近の結果を利用してスパースベクトルを時間とともに追跡する。
連続時間と離散時間の両方の指導例において、我々のモデルは元のシステムによく近似できることを示した。
論文 参考訳(メタデータ) (2022-06-07T02:25:38Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
古典力学の先行概念を機械学習モデルに統合する手法が提案されている。
これらのモデルの現在の機能について、精査する。
連続的および時間的可逆的ダイナミクスの使用は、すべてのクラスのモデルに恩恵をもたらす。
論文 参考訳(メタデータ) (2021-11-09T23:48:21Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - Learning Continuous System Dynamics from Irregularly-Sampled Partial
Observations [33.63818978256567]
グラフ構造を持つ多エージェント動的システムをモデル化するための潜在常微分方程式生成モデルLG-ODEを提案する。
高次元軌跡の埋め込みと連続潜伏系力学を同時に学習することができる。
我々のモデルは、教師なしの方法で初期状態を推論できるグラフニューラルネットワークによってパラメータ化された新しいエンコーダを採用している。
論文 参考訳(メタデータ) (2020-11-08T01:02:22Z) - Neural Dynamical Systems: Balancing Structure and Flexibility in
Physical Prediction [14.788494279754481]
各種グレーボックス設定における動的モデルの学習方法であるNeural Dynamical Systems (NDS)を紹介する。
NDSはニューラルネットワークを使用してシステムの自由パラメータを推定し、残余項を予測し、将来状態を予測するために時間とともに数値的に統合する。
論文 参考訳(メタデータ) (2020-06-23T00:50:48Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。