論文の概要: Pure Exploration in Kernel and Neural Bandits
- arxiv url: http://arxiv.org/abs/2106.12034v1
- Date: Tue, 22 Jun 2021 19:51:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-24 15:30:31.558486
- Title: Pure Exploration in Kernel and Neural Bandits
- Title(参考訳): 核と神経バンドの純粋な探索
- Authors: Yinglun Zhu, Dongruo Zhou, Ruoxi Jiang, Quanquan Gu, Rebecca Willett,
Robert Nowak
- Abstract要約: 我々は、特徴表現の次元が腕の数よりもはるかに大きい帯域における純粋な探索について研究する。
そこで本研究では,各アームの特徴表現を低次元空間に適応的に埋め込む手法を提案する。
- 参考スコア(独自算出の注目度): 90.23165420559664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study pure exploration in bandits, where the dimension of the feature
representation can be much larger than the number of arms. To overcome the
curse of dimensionality, we propose to adaptively embed the feature
representation of each arm into a lower-dimensional space and carefully deal
with the induced model misspecifications. Our approach is conceptually very
different from existing works that can either only handle low-dimensional
linear bandits or passively deal with model misspecifications. We showcase the
application of our approach to two pure exploration settings that were
previously under-studied: (1) the reward function belongs to a possibly
infinite-dimensional Reproducing Kernel Hilbert Space, and (2) the reward
function is nonlinear and can be approximated by neural networks. Our main
results provide sample complexity guarantees that only depend on the effective
dimension of the feature spaces in the kernel or neural representations.
Extensive experiments conducted on both synthetic and real-world datasets
demonstrate the efficacy of our methods.
- Abstract(参考訳): 我々は、特徴表現の次元が腕の数よりもはるかに大きい帯域における純粋な探索について研究する。
次元の呪いを克服するために,各腕の特徴表現を適応的に低次元空間に埋め込み,誘導モデルの誤特定を慎重に扱うことを提案する。
我々のアプローチは、概念的には、低次元の線形バンディットしか扱えない既存の作品や、モデルの誤特定を受動的に処理できる既存の作品とは大きく異なる。
1)報酬関数は、無限次元のケルネルヒルベルト空間に属する可能性があり、(2)報酬関数は非線形であり、ニューラルネットワークで近似することができる。
我々の主な結果は、カーネルや神経表現における機能空間の有効次元のみに依存する、サンプル複雑性の保証を提供する。
合成データと実世界データの両方で広範な実験を行い,本手法の有効性を実証した。
関連論文リスト
- Adaptive Shells for Efficient Neural Radiance Field Rendering [92.18962730460842]
本稿では, 表面および表面のレンダリングを円滑に遷移させるニューラル放射率の定式化を提案する。
我々の手法は、非常に高い忠実度で効率的なレンダリングを可能にする。
また,抽出したエンベロープは,アニメーションやシミュレーションなどの下流アプリケーションを可能にすることを示す。
論文 参考訳(メタデータ) (2023-11-16T18:58:55Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
線形化ラプラス近似(LLA)はベイズニューラルネットワークの構築に有効で効率的であることが示されている。
ベイズ最適化におけるLLAの有用性について検討し,その性能と柔軟性を強調した。
論文 参考訳(メタデータ) (2023-04-17T14:23:43Z) - Exploring Linear Feature Disentanglement For Neural Networks [63.20827189693117]
Sigmoid、ReLU、Tanhなどの非線形活性化関数は、ニューラルネットワーク(NN)において大きな成功を収めた。
サンプルの複雑な非線形特性のため、これらの活性化関数の目的は、元の特徴空間から線形分離可能な特徴空間へサンプルを投影することである。
この現象は、現在の典型的なNNにおいて、すべての特徴がすべての非線形関数によって変換される必要があるかどうかを探求することに興味をそそる。
論文 参考訳(メタデータ) (2022-03-22T13:09:17Z) - Learning Low-Dimensional Nonlinear Structures from High-Dimensional
Noisy Data: An Integral Operator Approach [5.975670441166475]
本研究では,高次元および雑音観測から低次元非線形構造を学習するためのカーネルスペクトル埋め込みアルゴリズムを提案する。
このアルゴリズムは、基礎となる多様体の事前の知識に依存しない適応的な帯域幅選択手順を用いる。
得られた低次元埋め込みは、データ可視化、クラスタリング、予測などの下流目的にさらに活用することができる。
論文 参考訳(メタデータ) (2022-02-28T22:46:34Z) - Linear approximability of two-layer neural networks: A comprehensive
analysis based on spectral decay [4.042159113348107]
まず、単一ニューロンの場合について考察し、コルモゴロフ幅で定量化される線形近似性は、共役核の固有値崩壊によって制御されることを示す。
また,2層ニューラルネットワークについても同様の結果が得られた。
論文 参考訳(メタデータ) (2021-08-10T23:30:29Z) - Provable Model-based Nonlinear Bandit and Reinforcement Learning: Shelve
Optimism, Embrace Virtual Curvature [61.22680308681648]
決定論的報酬を有する1層ニューラルネットバンディットにおいても,グローバル収束は統計的に難解であることを示す。
非線形バンディットとRLの両方に対して,オンラインモデル学習者による仮想アセンジ(Virtual Ascent with Online Model Learner)というモデルベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-08T12:41:56Z) - Dynamics of two-dimensional open quantum lattice models with tensor
networks [0.0]
熱力学的極限に直接適用可能な無限射影ペア演算子(iPEPO)アンサッツに基づくテンソルネットワーク法を開発した。
非平均場限界における散逸的逆量子イジングと駆動散逸型ハードコアボソンモデルを考える。
提案手法は,既存の手法の適用範囲をはるかに超えながら,現在の実験に利用できる制度を研究できる。
論文 参考訳(メタデータ) (2020-12-22T18:24:20Z) - Multi-fidelity data fusion for the approximation of scalar functions
with low intrinsic dimensionality through active subspaces [0.0]
アクティブな部分空間を含む多面的アプローチを提案し、それを2つの異なる高次元ベンチマークでテストする。
本研究では,アクティブな部分空間を含む多元性アプローチを提案し,これを2つの異なる高次元ベンチマークで検証する。
論文 参考訳(メタデータ) (2020-10-16T12:35:49Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
次元削減法は、高次元データの可視化と解釈に有用な手段を提供する。
多くの一般的な手法は単純な2次元のマニフォールドでも劇的に失敗する。
本稿では,グローバルな構造を座標として組み込んだ,新しいインクリメンタルな空間推定器の埋め込み手法を提案する。
実験により,本アルゴリズムは実世界および合成データセットに新規で興味深い埋め込みを復元することを示した。
論文 参考訳(メタデータ) (2020-07-07T10:04:28Z) - Sample complexity and effective dimension for regression on manifolds [13.774258153124205]
ヒルベルト空間法を再現したカーネルを用いた多様体上の回帰理論を考える。
多様体上の滑らかな函数のある空間は、多様体次元に応じて拡大する複雑性を持つ実効有限次元であることが示される。
論文 参考訳(メタデータ) (2020-06-13T14:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。