論文の概要: Beyond Predictions in Neural ODEs: Identification and Interventions
- arxiv url: http://arxiv.org/abs/2106.12430v1
- Date: Wed, 23 Jun 2021 14:35:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-24 15:30:44.868010
- Title: Beyond Predictions in Neural ODEs: Identification and Interventions
- Title(参考訳): 神経odeにおける予測を超える:同定と介入
- Authors: Hananeh Aliee, Fabian J. Theis, Niki Kilbertus
- Abstract要約: システムに関する大量の観測データがあれば、その進化を規定するルールを解明できるだろうか?
単純な正規化スキームとフレキシブルなニューラルODEを組み合わせることで,時系列データから動的・因果構造を頑健に復元できることを示す。
我々は、変数やシステム自体の介入の下で正確な予測を行うこともできることを示して結論付けます。
- 参考スコア(独自算出の注目度): 4.257168718582631
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spurred by tremendous success in pattern matching and prediction tasks,
researchers increasingly resort to machine learning to aid original scientific
discovery. Given large amounts of observational data about a system, can we
uncover the rules that govern its evolution? Solving this task holds the great
promise of fully understanding the causal interactions and being able to make
reliable predictions about the system's behavior under interventions. We take a
step towards answering this question for time-series data generated from
systems of ordinary differential equations (ODEs). While the governing ODEs
might not be identifiable from data alone, we show that combining simple
regularization schemes with flexible neural ODEs can robustly recover the
dynamics and causal structures from time-series data. Our results on a variety
of (non)-linear first and second order systems as well as real data validate
our method. We conclude by showing that we can also make accurate predictions
under interventions on variables or the system itself.
- Abstract(参考訳): パターンマッチングと予測タスクの膨大な成功に刺激され、研究者は独自の科学的発見を支援するために機械学習に頼るようになった。
システムに関する大量の観測データがあれば、その進化を支配するルールを解明できるだろうか?
このタスクの解決は、因果的相互作用を完全に理解し、介入の下でシステムの振る舞いについて信頼できる予測を行うという大きな約束を果たす。
我々は、通常の微分方程式(ODE)系から生成された時系列データに対して、この問題に答えるための一歩を踏み出した。
ガバナンスODEはデータだけでは識別できないかもしれないが、フレキシブルなニューラルODEと単純な正規化スキームを組み合わせることで、時系列データから動的および因果構造を堅牢に復元できることを示す。
提案手法は, 実データと同様に, 様々な(非)線形一階および二階システムにおいて検証された。
我々は、変数やシステム自体の介入の下で正確な予測を行うこともできることを示して結論付けます。
関連論文リスト
- eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
非線形状態空間グラフィカルモデルのための低ランク構造化変分オートエンコーダフレームワークを提案する。
我々のアプローチは、より予測的な生成モデルを学ぶ能力を一貫して示している。
論文 参考訳(メタデータ) (2024-03-03T02:19:49Z) - Foundational Inference Models for Dynamical Systems [5.549794481031468]
我々は,ODEによって決定されると仮定される時系列データの欠落を補うという古典的な問題に対して,新たな視点を提供する。
本稿では,いくつかの(隠れた)ODEを満たすパラメトリック関数を通じて,ゼロショット時系列計算のための新しい教師付き学習フレームワークを提案する。
我々は,1と同一(事前学習)の認識モデルが,63個の異なる時系列に対してゼロショット計算を行なえることを実証的に実証した。
論文 参考訳(メタデータ) (2024-02-12T11:48:54Z) - Learning the Dynamics of Sparsely Observed Interacting Systems [0.6021787236982659]
ターゲットと特徴時系列をリンクする未知の非パラメトリックシステムのダイナミクスを学習する問題に対処する。
符号のリッチな理論を活用することで、この非線形問題を高次元線形回帰として考えることができる。
論文 参考訳(メタデータ) (2023-01-27T10:48:28Z) - Autoregressive GNN-ODE GRU Model for Network Dynamics [7.272158647379444]
本稿では,AGOG(Autoregressive GNN-ODE GRU Model)を提案する。
我々のモデルは複雑なシステムの連続的動的過程を正確に捉え、最小限の誤差でノード状態の予測を行うことができる。
論文 参考訳(メタデータ) (2022-11-19T05:43:10Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Identifying nonlinear dynamical systems from multi-modal time series
data [3.721528851694675]
物理学、生物学、医学における経験的に観察された時系列は、一般的に、基礎となる力学系(DS)によって生成される。
完全にデータ駆動で教師なしの方法で、この潜伏するDSを再構築するための機械学習手法の収集への関心が高まっている。
本稿では,非線形DS識別とクロスモーダル予測を目的としたマルチモーダルデータ統合のための汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-04T14:59:28Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。